LinkedIn Green Skills Report

2025

Executive Summary

As the world enters a decisive phase in climate transition, business and policy leaders are increasingly shifting their focus—from ambition to action. With new Nationally Determined Contributions (NDCs) submitted and implementation timelines accelerating, the spotlight is now on execution: how to fund the transition, how to scale solutions, and critically, whether we have the skilled workforce to deliver.

The 2025 LinkedIn Green Skills Report arrives at this pivotal moment, offering data-driven insights into the readiness of labor markets worldwide to meet the demands of the climate and energy transition, as well as realize the economic opportunity it presents.

Hiring outpaces skilling in the green economy, signaling both the momentum of the transition and a warning that we must accelerate green skills development to bring the whole-of-economy shift to fruition. From 2021-2025, green hiring grew twice as fast as the share of workers who have green skills.

Even more, **green skills are now core business skills**. Workers with green skills in non-green roles now make up the majority of green hires for the first time. These are jobs that could traditionally be done without green skills, but where green skills are increasingly applied to support the climate and energy transition, underpin adaptability, and drive business value. Put together, green skills are increasingly foundational rather than niche and have emerged as a competitive edge in today's labor market. In fact, the LinkedIn hiring rate for workers in the green talent pool is 46.6% higher than the hiring rate for the global workforce overall.

The foundational trend of growth in green hiring and skills development continued from July 2024 to July 2025, though at a slower pace than from July 2023 to July 2024. We see this transition as enduring and resilient. The rise of Al and the broader push toward electrification are putting energy production and climate action into sharper relief, buoying demand for green skills across industries like technology and utilities.

This report presents the latest trends of green skills in today's workforce, shaped by political change, the rise of Al, increasing energy demand and the growing physical impacts of climate change. We show how the nature and distribution of green skills within the workforce is evolving across industries and nations, and - drawing on Linkedln's Al skills data - how they intersect with both "sustainable Al" and "Al for sustainability". We also examine critical industries such as energy and manufacturing, and a growing momentum of green skills moving through value chains. Finally, we present a series of policy recommendations aimed at accelerating green skills development.

"As green skills spread throughout the economy, they are helping deliver what businesses and governments care most about – adaptability, resilience, efficiency, competitiveness and innovation. The path from climate ambition to action is paved with economic opportunity for workers, businesses and governments, but the gulf between demand and supply of skilled workers continues to put this at risk. We will only close the gap if decisive action is taken now to make skills and workforce training a core part of climate and energy policy."

Sue Duke | Vice President of Public Policy & Economic Graph, LinkedIn

Many companies remain committed to sustainability: <u>analysis of SBTi submissions</u> shows that the number of corporations setting ambitious goals continues to grow. <u>Recent research published in Harvard Business Review</u> shows the same trend: 32% of companies are accelerating their climate commitments, while only 13% of companies examined were retreating. Likewise, demand for green skills continues to grow and diffuse across industries and functions.

The shift from goal-setting to implementation means employers and governments are now using skills commonly thought to achieve sustainability outcomes more directly to promote innovation, risk mitigation, supply chain and operational resilience, and efficiency-driven cost reductions. They rely on workers' green skills to deliver these outcomes. Green skills are also increasingly seen as key levers for driving growth and achieving a transition that maximizes economic opportunity - illustrated by the inclusion of a thematic focus on jobs at the COP30 meeting in Belém, Brazil.

To advance the shift toward an economy in which an ever growing number of jobs contribute to both climate action and economic competitiveness, governments and businesses need a clearer picture of how green skills apply in different contexts. Which skills matter most in certain sectors? How can we upskill the existing workforce while building these capabilities in younger generations? What enabling skills are required in roles that support key sectors like energy and manufacturing, which sit at the front line of net-zero delivery? And what skills are needed to strengthen resilience to the environmental impacts now unfolding daily?

Ultimately, it is up to businesses and policymakers to determine, through their actions, if ambition will become reality. The answer will hinge on how effectively green skills are embedded across sectors and value chains, ensuring they are not confined to a niche but proliferate throughout the economy.

DEFINITIONS

For more details, see the Methodology note at the end of this report.

Green skills are those that directly combat the effects of climate change. Fastest growing green skills are those that are most commonly added by Linkedln members in a given year.

Green jobs are those that have sustainability at their core and cannot be performed without extensive knowledge of green skills.

Green talent is a LinkedIn member who has explicitly added at least one green skill to their profile and/or are working in a green job. The green talent concentration is the proportion of LinkedIn members in an industry or country that hold at least one green skill and/or are working in a green job.

Share of Green hiring is the share of workers hired with green skills and/or green job titles as a percentage of all workers hired during that time period. A hire is a LinkedIn member in an industry/geography who added a new employer to their profile in the same month the new job began.

LinkedIn Hiring Rate is the count of hires divided by the total number of LinkedIn members in that geography. The number is indexed to the average month in 2016.

Green Hiring Rate is the count of green hires divided by the total number of green LinkedIn members in that geography indexed to the average month in 2016. In this report we included the relative hiring rate comparing the Green Hiring Rate to the LinkedIn Hiring Rate which may be expressed as a ratio or a % difference e.g. a relative hiring rate of 1.5 in the United States means that Green Hiring Rate is 1.5x the LinkedIn Hiring Rate in the United States.

Key Findings

Green talent concentration continues to grow in all countries, up 4.3% this year. But growth slowed year on year, a pattern that businesses and government should keep a close eye on.

Utilities, which includes renewable energy production, is the industry with the highest concentration of green talent, with 3 in 10 (29.6%) workers holding at least one green skill.

Growth in green hiring is almost 2x faster than growth in the share of workers with green skills (7.7% vs 4.3%), continuing a pattern also seen in the past two years and signalling continued demand for green skills.

The Technology, Information, and Media industry has the highest average annual growth in the share of green hires from 2021-2025 (11.3%). In 2025, 14.7% of hires into the industry had green skills.

For the first time, our data show that workers with green skills in non-green titles make up 53.0% of all green hires, the largest segment of this growing group. Green skills are increasingly diffusing across the workforce and increasingly important across a wide array of job titles.

Across the world, Energy Management is the fastest-growing green skill category. The proportion of members that added this skill was 17.4% higher in 2025 than in 2024. Significant growth in Al-driven demand for energy and continued growth in renewable and nuclear energy supply see these skills growing particularly quickly in the Technology, Information and Media and Utilities sectors.

Green talent is far more likely to secure a job, getting hired at a global rate 46.6% above the economy-wide hiring rate. Though still large, this advantage decreased slightly from January 2025 to July 2025.

Table of Contents

EXECUTIVE SUMMARY 2

KEY FINDINGS

THE GREEN SKILLS LANDSCAPE

Green skills are high value skills for economies, employers and
 individuals 7

Green skills hiring outpaces green skills development 8

Case study 1: Fortescue 9

Green skills are spreading across the workforce 10

Case study 2: The Skill Council for Green Jobs | Building

the workforce to deliver India's bold climate ambitions 11

Green skills provide significant advantages to workers 12

2. Mitigation and Adaptation Goals Drive Green Skills Growth 14
 Green skills continue to grow in 2025 14
 Where green skills are growing fastest 15
 Green skills are also needed to respond to the impacts of climate today 17

Case study 3: Zurich Resilience Solutions 18

AI & GREEN SKILLS 19

- 1. The pursuit of sustainable Al 21
- 2. Al for Sustainability 22

Case study 4: Schneider Electric 24

PIVOTAL INDUSTRY TRENDS

1. The Energy Sector 26

Nuclear is taking its place in the energy transition and driving skills gains in Utilities 27

Case study 5: Octopus Energy Services 28
Case study 6: Iberdrola and Neoenergia 29

2. Supply Chains and Logistics 30

Case study 7: Natura 31

3. Manufacturing 32

EV skills continue to grow even as workforce growth levels off 33

Case study 8: Trane Technologies 34

POLICY RECOMMENDATIONS

CONCLUSION

METHODOLOGY & ACKNOWLEDGEMENTS

Chapter 1

The Green Skills Landscape

1

Green skills are high value skills for economies, employers and individuals

Green skills hiring outpaces green skills development

In many industries, green skills are now shorthand for capabilities that drive what businesses have always prioritized: resilience, efficiency, competitiveness, and innovation. A <u>2025 survey</u> of more than 300 large corporations across Europe, North America, and APAC found that 88% of companies see sustainability as a long-term value-creation opportunity—up three percentage points from 2024.

Governments are also emphasizing the economic and strategic benefits of the green economy, including greater security and self-reliance. For example, <u>a recent study by the Brazilian</u>

<u>Government and the Federal University of Rio de Janeiro</u> found that implementing the country's Ecological Transformation Plan would boost GDP growth, create 2 million jobs by 2035, and accelerate decarbonization.

Major economies are increasingly framing their strategies around competing for a share of the future economy. As countries compete for advantage in the green economy, businesses signal the same competition through their hiring. Across industries, this year's data shows that green talent hiring is consistently higher than the concentration of green skilled workers currently in that industry, signaling that industries are looking to increase their green talent to meet this moment and prepare for the future.

Comparing share of green hires vs green talent concentration by industry (2025)

Industry	Share of Green Hires (2025)	Green Talent Concentration (2025)
Utilities	33.4%	29.5%
Oil, Gas, and Mining	32.8%	26.9%
Construction	32.4%	26.6%
Farming, Ranching, Forestry	31.8%	24.7%
Consumer Services	23.3%	21.7%
Education	22.7%	19.1%
Manufacturing	22.4%	18.7%
Professional Services	19.1%	18.6%
Government Administration	18.7%	17.7%
Wholesale	18.1%	14.6%
Real Estate and Equipment Rental Services	17.3%	14.5%
Transportation, Logistics, Supply Chain and Storage	16.9%	14.4%
Administrative and Support Services	15.0%	13.7%
Technology, Information and Media	14.6%	13.3%
Entertainment Providers	14.6%	13.3%
Accommodation and Food Services	14.0%	11.8%
Hospitals and Health Care	13.0%	11.1%
Financial Services	12.8%	10.7%
Retail	12.3%	10.4%

The industry with the most growth in its share of green hires from 2021-2025 is Technology, Information, and Media (11.3%), serving as a strong indicator that this industry is reconfiguring its workforce to deliver on sustainability objectives in the resource-intensive AI era. Other industries with above average growth in the share of green hires include Transportation, Logistics, Supply Chain, and Storage (8.0%), as well as Financial Services (7.5%), reinforcing how these industries are transforming to decarbonize value chains and deploy climate finance, respectively.

With an increase of 16.3% from 2024-2025, Financial Services had the most year-over-year growth in the share of green hires. This acceleration trend is particularly pronounced in Europe, where France saw 20% year-over-year growth, the UK recorded 15.3% year-over-year growth, and Germany 9.2%. These high growth rates are likely linked to legislative efforts at the EU level requiring expertise to navigate, as well as the growing need to deploy financial capital in support of climate solutions and develop insurance products that account for the risks associated with climate change. However, the year-over-year growth in the green talent concentration within the Financial Service sector is much slower with 4.3% in France, 4.1% in the UK, and 1.5% in Germany.

While all of these industries are experiencing high growth in green hiring, they still lag most other industries in their green talent concentration. As crucial as these industries are to achieving climate action at scale, government, employers, and education & training providers need to implement steps to accelerate green skills development.

Looking at country-level data, the share of green hires has increased between 2021-2025 in all 47 countries for which we have this data. This highlights strong and persistent demand for workers with green skills, including in roles not solely focused on green issues. In fact, the share of green hires has grown at almost double the pace of green skills growth from 2021-2025 (6.2% annually vs. 3.4% annually).

If we do not drastically accelerate green skills development, we will leave both climate action and economic opportunity on the table. For governments, educators, and employers, the recognition of green transitions as an economic opportunity is a moment ripe for much greater investment in people.

Comparing 2021-2025 CAGR in share of green hires vs. green talent concentration in select countries

Country	Average annual growth in Share of Green Hires 2021-2025	Average annual growth in Green Talent Concentration 2021-2025
Australia	5.8%	3.4%
Brazil	10.7%	5.7%
Canada	8.7%	3.5%
France	4.9%	3.8%
Germany	5.4%	3.2%
India	5.3%	4.3%
United Kingdom	7.8%	3.4%
United States	8.9%	3.6%

Case study 1: Fortescue

Combining technological innovation and skills building to decarbonise heavy industries

Mining, steel and shipping are three hard-to-abate industries that together account for a significant share of global emissions; roughly $\frac{5\%}{7\%}$ and $\frac{3\%}{7\%}$, respectively. Fortescue, headquartered in Australia and active across all three sectors, supplies materials to manufacturing and construction industries worldwide.

The company has made headlines for its goal to achieve "Real Zero" - to eliminate all fossil fuels and related terrestrial emissions across its Australian iron ore operations by 2030, without using offsets or carbon credits. It has also committed to helping customers cut steelmaking emissions intensity by 7.5% and halving shipping emissions intensity by the same date.

Fortescue's transformation depends on both technological innovation and workforce development. Thousands of employees are being upskilled to operate, maintain, and scale new solutions at speed and scale, often in partnership with other companies.

"Our Real Zero transformation is as much about people as it is about technology – our people are building new green skills to be ready to operate renewable technologies, zero emissions equipment and run the systems that will make our mining operations clean and green."

Sinead Booth | Group Manager Decarb Program at Fortescue

STEEL

To cut emissions from steelmaking—which represent 98% of Fortescue's Scope 3 footprint—the company is developing a process that combines green hydrogen reduction furnaces with electric smelting. Delivering this process has required bespoke training programs to build first-of-their-kind skills among workers at the Christmas Creek Facility.

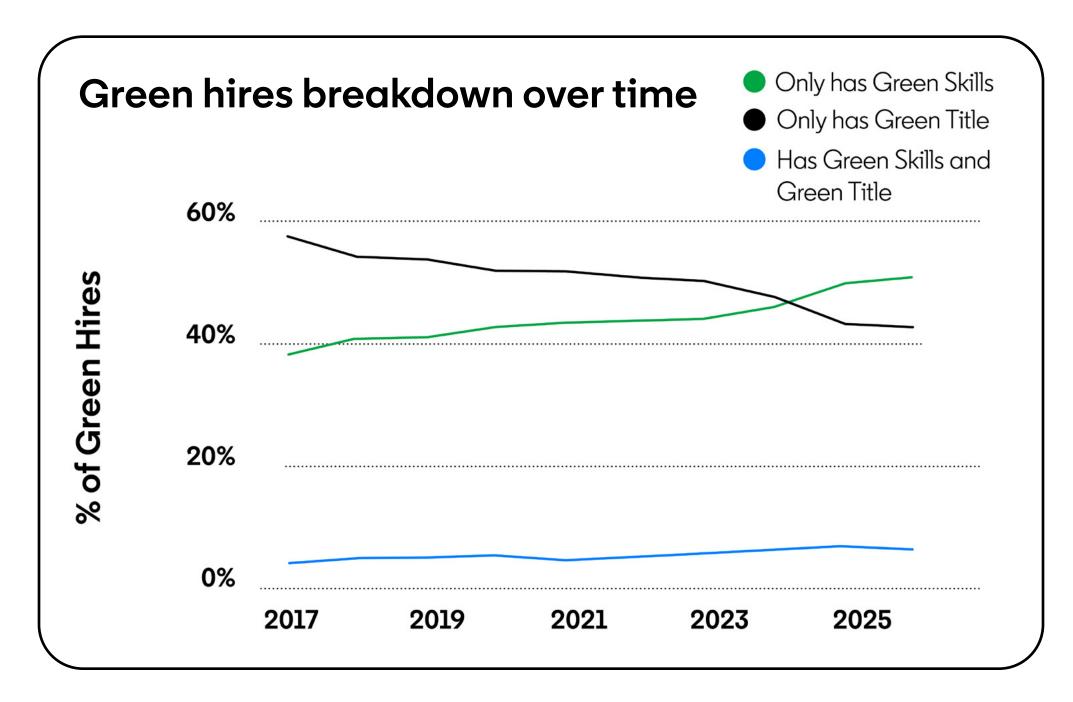
If scaled, this technology could help to avoid up to 27 million tonnes of CO₂-e annually by 2031. Collaborations with Baowu Resources - part of China Baowu Steel Group - CITIC Pacific Special Steel Group and Hunan Steel Group include technology partnerships, workforce exchanges and cooperation on green metal supply chain development that aim to increase the pace of upskilling and uptake of these technologies across the industry.

MINING

Working with a number of heavy equipment manufacturers globally, including Liebherr, XCMG and Epiroc, the company is scaling the use of cabled and battery electric equipment, with 10 electric excavators and 1 electric drill already in operation. Using and maintaining this equipment requires mining workers to build new skills. Over 3,500 employees have completed high-voltage trailing cable training, ensuring safe operations for the >450km of high-voltage trailing cable required in their future mining operations. Alongside this, almost 3,000 people have completed lithium battery training to get ready for the deployment of the world's biggest mobile batteries on site in 2026.

These investments in electrification continue to reduce operating costs and improve productivity. Fortescue's Eliwana site turned off their diesel power station late last year as a result of connecting to their high-renewable grid and saw an immediate 47% reduction in site power costs. A further 190MW of solar and 350MWh of battery energy storage systems to be introduced in 2026 will keep improving Fortescue's bottom-line.

SHIPPING


Shipping accounts for 3% of global carbon emissions today but, without substantial innovation in propulsion methods, this <u>may rise to as much as 10% by 2050</u>. To illustrate a possible way forward, in 2024, Fortescue built and launched the Fortescue Green Pioneer; the world's first dual-fuel ammonia powered vessel. The ship's crew were trained in ammonia handling and safety protocols, creating one of the first ammonia-capable maritime workforces globally.

Green skills are spreading across the workforce

As companies move from setting goals to implementing them and recognizing the value of "green" solutions like renewables, resilient supply chains, and energy efficient systems to their bottom line, sustainability is becoming a driver of operating models and business strategy. Green skills and knowledge are now applied across a widening set of decisions and activities, well beyond corporate sustainability teams. As a result, the value of "green" is being realized deeper inside businesses, reshaping how work is carried out.

This shift highlights how green capabilities are becoming essential across mainstream roles, not just in explicitly "green" jobs. This year's data reveals a new trend: for the first time, the largest driver of green hires is workers with green skills in non-green roles. In all industries, green hiring (the share of new hires with one or more green skills) consistently outpaces an industry's current green talent concentration (the share of the existing workforce with at least one green skill).

One likely explanation for this trend is that companies increasingly recognize the value of applying a "green" lens across many areas of work. Even if the role itself is not explicitly focused on helping a company reach its sustainability targets, employers are looking to workers with those same skills to deliver efficiency, growth, and resilience. Green skills provide an additional source of adaptability, <u>a critical skill for all businesses</u> in an increasingly changing and evolving world of work.

In manufacturing, for instance, workers are applying green skills to produce goods more efficiently and with technologically advanced tools. In logistics and procurement, <u>extreme weather events are disrupting global supply chains</u>, making sustainability and resilience critical parts of day-to-day roles.

These examples show how green skills are becoming integral to business continuity and competitiveness, as well as to how workers do their jobs and access employment opportunities. In many cases, those same gains in efficiency and cost reductions deliver positive environmental impacts.

One consequence of this wider dispersal of responsibility is that companies are investing in training large parts of their workforce on the basics of sustainability. A <u>2023 Deloitte</u> survey of large corporations found that half of business leaders were already educating employees on sustainability and climate change, with another 41% planning to launch programmes within two years.

In LinkedIn's 2025 survey of workers across small and large companies, 49% said that they had access to formal green skills training. Broadly speaking, this is good news in that green skills training is becoming increasingly available. However, most workers do not attribute this training to their employers, suggesting a disconnect between leadership and workers. Since many workers want to see their job contribute to climate action, employers would benefit from taking two clear steps: 1) taking a skills-based approach to talent development that directly connects workers with the relevant green skills for their current roles and 2) explaining how green skills development ladders up to business objectives, sustainability-related and otherwise.

These trends are reflected in Linkedln skills data, where Sustainability Education was among the most frequently added skills categories in 2025 (+6.7%).

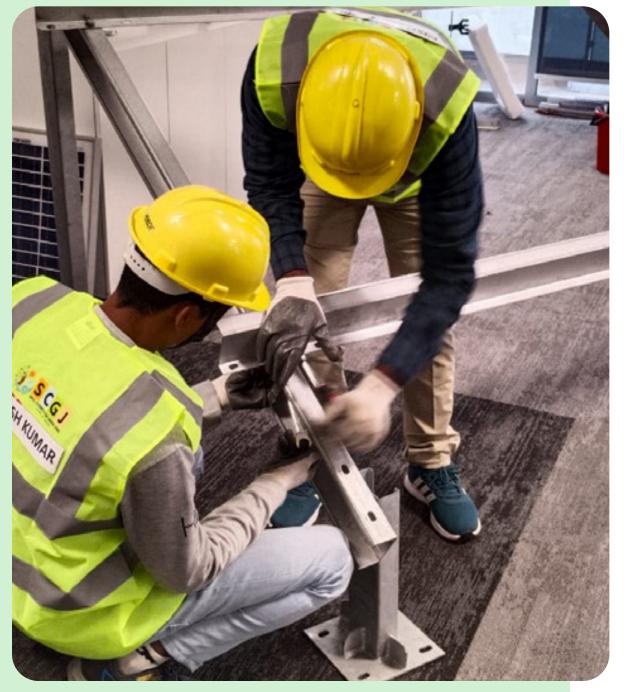
Studies in industries from mining to manufacturing show that investment in training on sustainability increases overall employee performance as well as advancing environmental goals. With a wide range of training approaches and solutions available, companies and employees have an opportunity to advance mutual goals by investing more in these upskilling opportunities.

Case Study 2: The Skill Council for Green Jobs

The <u>Skill Council for Green Jobs</u> (SCGJ), headquartered in New Delhi, was established under India's Ministry of Skills Development and Entrepreneurship in 2015 to meet the country's fast-growing demand for a skilled green workforce. Its creation was a direct response to India's ambitious renewable energy targets <u>announced at COP26</u>, which called for 175GW of renewable capacity by 2022. This goal was later expanded to 500GW by 2030. At the time, policymakers recognised that achieving these targets would be impossible without a dedicated body to drive skills development across renewable energy and related sectors.

Since its inception, SCGJ has developed more than 100 qualifications spanning solar, wind, small hydro, bioenergy, waste management, electric mobility, and most recently green hydrogen. The development of new courses is informed by regular skill gap analyses conducted through consultations with industry and government stakeholders.

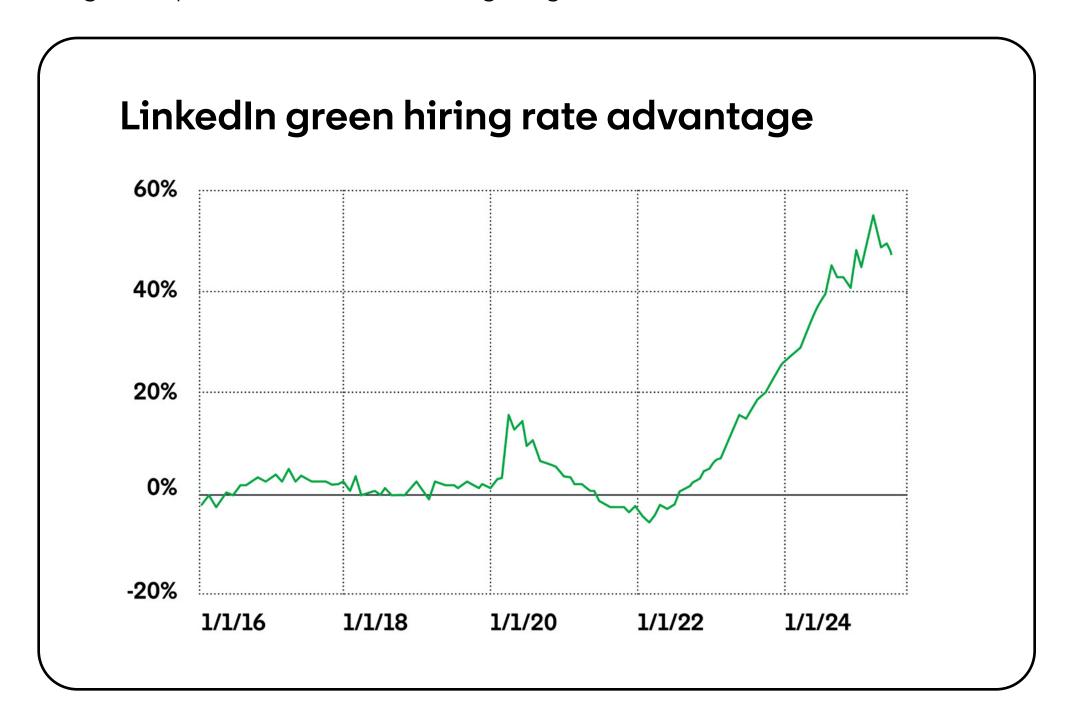
Training is deployed through a train-the-trainer model and through accredited training providers that deliver courses across all regions of India. This network now includes over 1200 providers and 500 trainers, together facilitating more than 56 programmes that have reached more than 600,000 learners to date.


One of the SCGJ's distinguishing features is its dual-track approach. Alongside longer-form training courses that last several months, the SCGJ runs Recognition of Prior Learning (RPL) programmes. These short, modular "micro-credentials" certify the skills of experienced workers. For example, plumbers and electricians with decades of practical experience but no formal certification are benchmarked against national standards, giving them recognition and new opportunities in the growing green economy.

The Council's work is also helping to lift up disadvantaged communities. In 2024, in Gujarat's Rann of Kutch region, the <u>SCGJ delivered 400 hours of solar PV installation and maintenance training</u> to women from salt pan working communities, who often suffer from economic deprivation and discrimination. 40% of women that participated in the course secured jobs in solar as a direct result.

Today, India has already <u>surpassed 220GW of renewable energy capacity</u>, and met its 2030 target to produce more than 50% of its electricity using non-fossil fuel sources five years ahead of schedule. SCGJ's role in building a skilled workforce has been critical to achieving this trajectory.

With emerging focus areas such as green hydrogen (India has pledged 5 million metric tons of production and export by 2030), the SCGJ is set to play an even more central role in ensuring the country has the skilled manpower to meet its ambitions—while also providing millions of Indians with access to quality green jobs that transform livelihoods.



Green skills provide significant advantages to workers

For those who have them, green skills remain powerful assets in their careers. The LinkedIn hiring rate (LHR) for the green talent pool - those with green job titles and/or green skills - is 46.6% higher than the hiring rate for the workforce overall. In practice, this means workers with green skills are securing jobs more quickly, underscoring the continued strength of demand.

The benefits are particularly pronounced in some markets. In India, the LHR for green talent is 59.7% higher than for the overall workforce. France shows one of the smallest gaps (27.8%) but one of the largest year-on-year increases (+54.4%). In the US, green talents relative LHR advantage stood at 46.5% in July 2025, almost identical to the global median.

Green hiring is stronger today than at the start of the decade. In fact, the median LinkedIn hiring rate advantage for workers with green skills has risen each year since data collection began—though that upward trend slowed at the beginning of 2025.

This underscores how green work has been a driver of economic growth and recovery in the post-Covid period. In the US, for example, overall hiring remains 20% below pre-pandemic (July 2019) levels, while green hiring is only 11% lower. This resilience suggests that green jobs and skills are proving more durable in the face of economic shocks than the wider labor market.

The strength of the green hiring rate indicates the economic opportunity accessible to workers with green skills. However, some groups of workers are less likely to have green skills. For example, LinkedIn data shows that women are less likely to have green skills than men, threatening to put this opportunity further out of reach without strategic interventions.

The industries with the highest demand for green skills and therefore an advantage for workers with green skills include Utilities, Supply Chain & Logistics, Construction, and Technology. These are the same industries in which <u>women are most underrepresented</u>, potentially denying them access to the economic opportunity of the green economy.

Integrating skills-based hiring and talent development practices, which focus on hiring based on skills rather than only job titles or educational attainment, could help reduce this gender gap. LinkedIn research shows that skills-based hiring increases the representativeness of women in the pool of qualified workers for open jobs in these evolving industries. For example, representation of women in the skills-based talent pool is 26% higher in the US Construction industry and 22% higher in India's Utilities industry. Taking this approach has the added benefit of helping employers find untapped talent pools for these in-demand roles.

WHAT THIS MEANS FOR JOB SEEKERS

Most people want to support the green transformation in their working lives. In fact, a LinkedIn survey in September 2025 found that 43% of workers would ideally like a job that contributes to energy transition or climate adaptation.

The desire to work in a green job is even more pronounced among younger generations. Compared to an overall rate of 4 in 10, among millennials 5 in 10 expressed interest in having a green job and, among Gen-Z, this rose further to 6 in 10.

Yet many individuals still lack clarity on what green jobs or green skills are, how to build them, how they can leverage work to deliver climate impact, or how to break into the green economy. Governments and businesses need to do more to communicate these opportunities and connect people to them, especially given the high demand for such skills.

As more roles incorporate green skills, workers should focus on identifying which skills complement the capabilities they already have. As our data show, their next job is unlikely to have "green" or "sustainable" in the job title, but demonstrating relevant green skills may position them as a more competitive candidate.

Depending on their current occupation, skills, and aspirations, a growing set of initiatives exist to build green skills. In many countries, these include government-funded initiatives such as the UK and Irish Government <u>Green Accelerator Skills</u> <u>Programme</u> (GRASP), Germany's Dual Vocational Training initiative, which has <u>recently integrated green skills</u>, and the Indian Government's <u>Green Skill</u> <u>Development Programme</u> (<u>GSDP</u>), which help people enter industries including construction, clean energy, and agriculture.

Self-guided learning also plays a role. LinkedIn Learning's sustainability-focused courses, for example, saw a 28% increase in engagement in 2025, equipping job seekers with skills and knowledge relevant across a wide range of roles.

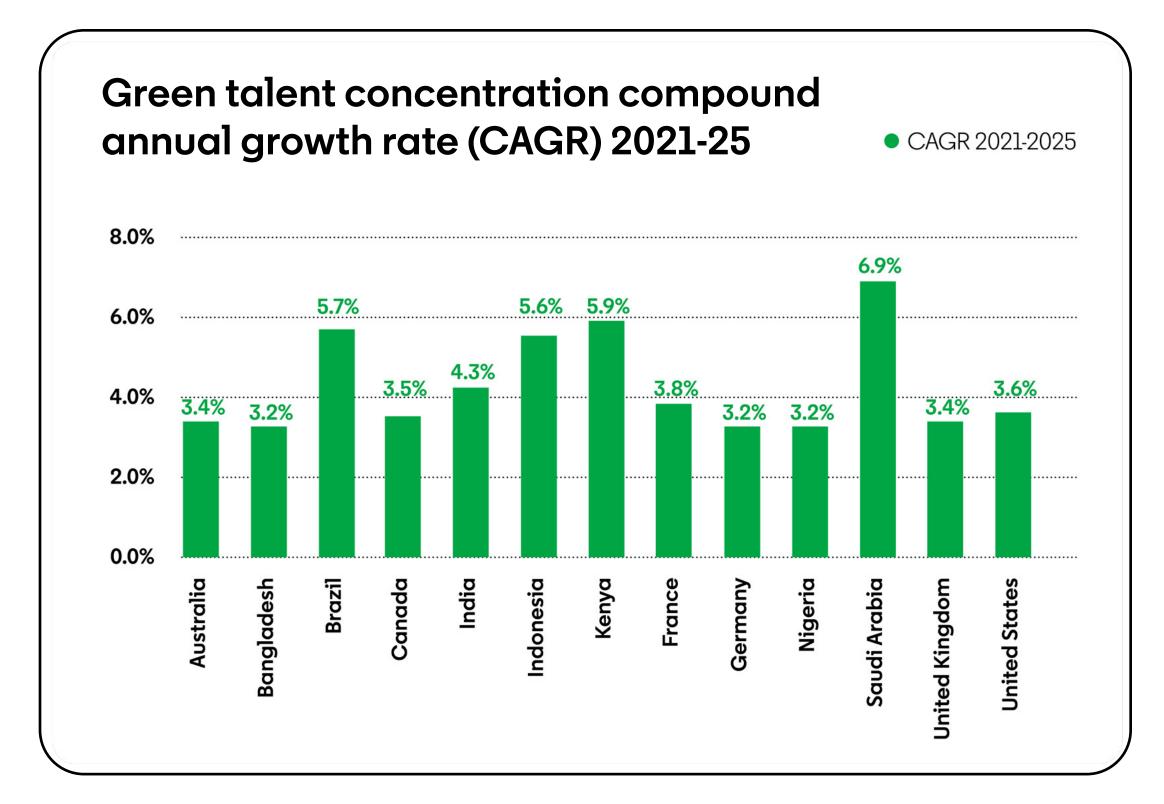
2

Mitigation and Adaptation Goals Drive Green Skills Growth

Green skills continue to grow in 2025

Across the 84 countries now examined, the share of workers with at least one green skill on LinkedIn has risen to 17.6%, up from 16.8% in 2024 and 15.2% in 2021.

In an increasing number of countries, more than one in five workers now report at least one green skill. In Germany, for example, green talent concentration stands at 21.1%. Other countries above this benchmark include Brunei (22.7%), Switzerland (22.6%), Saudi Arabia (20.8%), Ghana (20.1%), and Nigeria (20.1%).


Green skills in the global workforce grew by 4.3% from 2024 - 2025. The longer term trend from 2021 - 2025 shows average annual growth of 3.4% per year.

We also see signs of strong green skills levels across African economies. Ghana (20.1%), Nigeria (20.1%), and Kenya (19.7%) rank among the top 15 countries worldwide for green skills concentration. Kenya (7.8%) and Ghana (6.2%) also feature among the nations with the highest year-on-year growth rates.

India, while still at a relatively low green talent concentration (14.4%), recorded one of the highest year-on-year growth rates in 2025 at 6.2%. Elsewhere in Asia, major economies such as the Philippines (5.7%), Indonesia (5.6%), and Singapore (5.6%) also rank among the fastest-growing for green skills between 2021 and 2025.

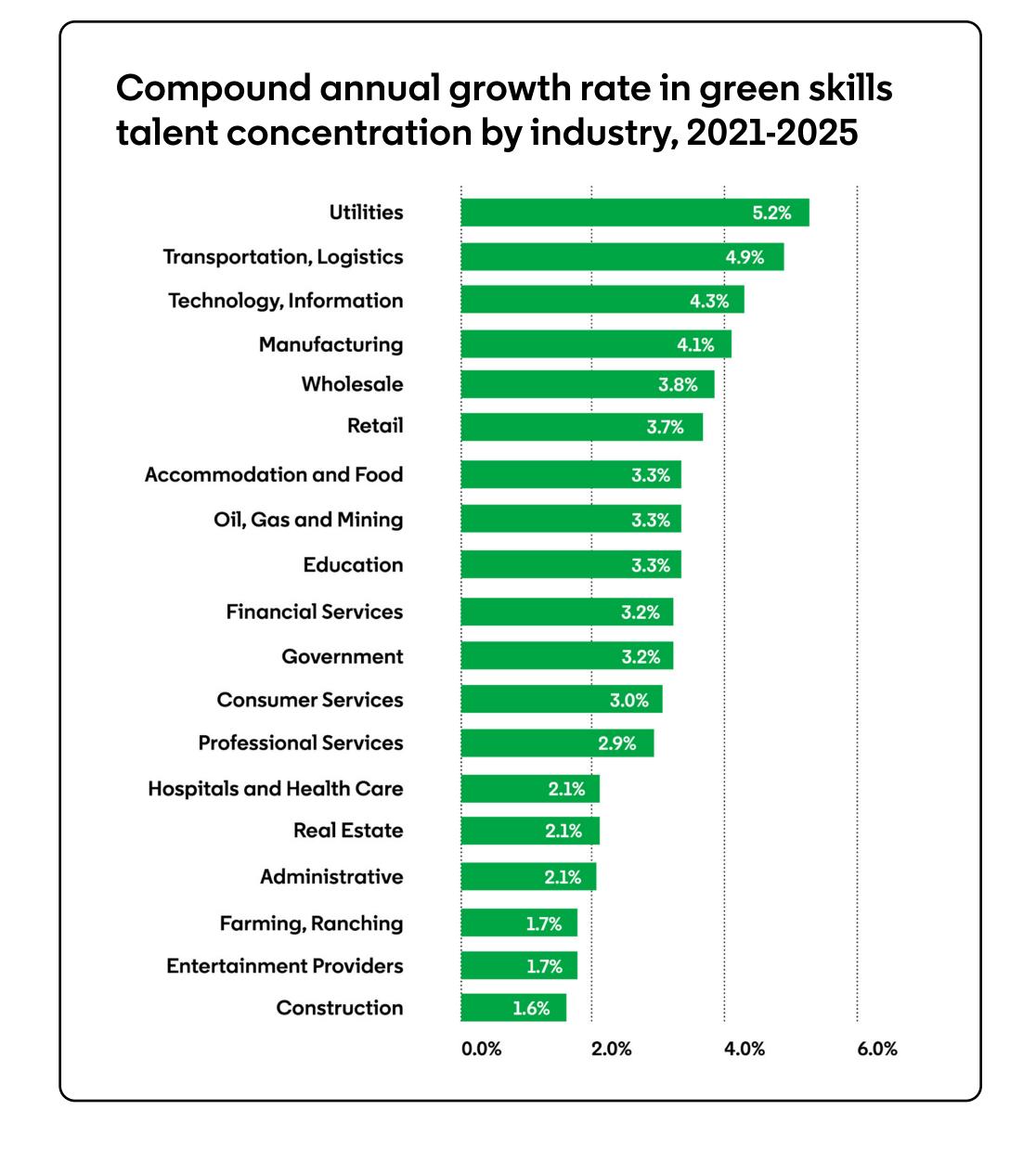
Yet the pace of growth appears to have slowed since a 2024 peak. The global median rate of growth in green talent concentration was 4.3% in 2024–25, down 1.2 percentage points from 5.5% in 2023–24.

While the long-term trend of green skills growth continues to point upwards, only a handful of countries saw higher year-on-year growth in 2025 than in 2024. Bangladesh was one, rising from 4.8% to 5.9%, possibly reflecting new sustainability disclosure requirements for banks introduced in December 2023. Other nations such as Saudi Arabia (-3.6%) and Brazil (-3.1%), recorded sharper slowdowns, while countries including Nigeria (-0.1%), Turkey (-0.3%), and the United States (-0.4%) maintained growth rates close to the previous year's levels.

Even if 2024 proves to have been an exceptional year, and the longer-term growth rate holds, **the current pace of green skills growth is not enough to meet projected demand for delivering the Paris Agreement**. At today's trajectory, the gap between supply and demand will persist. A <u>study</u> by Research and Markets points to the same imbalance - projecting just 60% growth in green skills over the next five years, compared with 260% growth in green jobs. Additionally, research from C40 Cities suggests that up to 51% of future demand for green talent may go unmet, putting a finer point on the need to develop and scale relevant workforce development efforts.

Governments should not simply "wait and see" how this trend develops. Our data also shows that companies increasingly recognize these skills as drivers of core business value—fueling innovation, improving efficiency, and strengthening resilience—illustrating their importance to modern economies. Skills gaps, if left to widen, take years to close—longer than we have to respond to climate change. For workers and businesses, unfilled green jobs don't only delay climate action; they leave economic opportunity on the table.

Where green skills are growing fastest


Across industries, the median annual growth rate in green talent concentration from 2021-2025 is 3.3%. While this steady growth is about half of the increase in the share of green hiring over the same period, we see some industries experience more growth in green skills among its workers than others.

Notably, the industries with the most growth in green talent concentration from 2021-2025 are Utilities, Supply Chain, Technology, and Manufacturing. Each of these industries plays a critical role in the climate and energy transition. For example, the Utilities industry includes all renewable power generation and electricity delivery. Since most large companies' emissions are in their supply chains, the logistics and manufacturing industries must undergo significant changes in their capabilities to help their large company buyers achieve their climate targets. And in the case of technology, the rise of AI presents a need to leverage green skills to both manage AI's resources intensity and use it to accelerate climate solutions.

These same industries are also the leaders in year-over-year growth in green talent concentration, though the Retail industry has joined this group, as well. This growth is noteworthy even with Retail's low baseline. In fact, Retail is the only industry to see acceleration in the growth of its green talent concentration. This might be driven by growing consumer attention and shifting preferences towards service providers with "greener" offerings and credentials, particularly in fashion.

Relative to other industries critical to the climate and energy transition, Financial Services had middling growth in its green talent concentration. It already has a low baseline with only one-in-ten workers in the industry (10.8%) having at least one green skill. The shift toward implementation relies heavily on the availability of capital to scale advanced energy technologies and climate solutions. Financial Services, which includes insurance, is equally important to promoting resilience against the impacts of climate change. It is vital that Financial Services make strategic investments to accelerate green skills development across the industry to meet this moment.

FASTEST GROWING SKILLS

Government and industry priorities are shaping which green skills are growing fastest: modernizing energy grids, managing energy demand, reducing waste and resource use across value chains, and rapidly upskilling workforces.

Reflecting these priorities, the green skills categories most frequently added by Linkedln users in 2025 were Energy Management, Sustainability Education, Waste Prevention, and Sustainable Procurement.

Fastest growing skills in select countries

Australia	Brazil	India	France	Germany	United Kingdom	United States
1. Operational Efficiency	1. Hazard Mitigation	1. Green Economy	1. Sustainability Strategy	1. Corporate Sustainability Reporting	1. Sustainable Growth	1. Strategic Program Planning Process
2. Integrated Supply Chain Management	2. Operational Efficiency	2. Weather Forecasting	2. Integrated Supply Chain Management	2. Integrated Supply Chain Management	2. Greenhouse Gas (GHG) Protocol	2. Responsible Sourcing
3. Decommissioning	3. Integrated Supply Chain Management	3. Electric Vehicle Operation	3. Sustainable Business Strategies	3. Sustainable Supply Chain Management	3. Net-Zero Carbon Emissions	3. Resource Efficiency
4. Integrated Project Delivery	4. Sustainability Strategy	4. Responsible Supply Chain Management	4. Corporate Sustainability	4. Operational Efficiency	4. Net-Zero Emissions	4. Sustainable Systems
5. Environmental Performance	5. Climate Change Impacts	5. Sustainable Growth	5. Sustainable Business	5. Decarbonization	5. Responsible Sourcing	5. Eco-friendly

Green skills are also needed to respond to the impacts of climate change today

The physical impacts of climate change are already driving major costs - <u>estimated at \$417</u> <u>billion in 2024, with insured losses of \$154 billion</u> - and pushing governments and businesses to invest more in the skills needed for adaptation. The World Economic Forum <u>projects</u> that **climate** change adaptation will be the third-largest source of net job growth by 2030, creating 5 million additional jobs.

There are signs that some green hiring is being driven by this need to respond to a changing climate. In Government Administration, for example, green hiring rose by six percentage points year-on-year: in 2025, 18.7% of new hires had at least one green skill.

Ecosystem Management, which includes several adaptation-focused skills, was among the fastest growing skills categories in Government work. Within this category, Climate Change Adaptation was among the fastest growing skills in Government Administration in countries including France, Australia, the UK, Canada, and Brazil. This reflects the fact that adaptation and resilience are now priorities across government functions - from health and education to defense.

For example, a growing list of cities, including Freetown in Sierra Leone and Phoenix in the US, are <u>creating the leadership position of Chief Heat Officer</u> within local government. The core purpose of this role is to work across functions and departments to build their capacity to respond to and protect residents from increasingly common and severe heatwaves.

There are also signs that extreme weather events are accelerating the uptake of adaptation-related green skills. In countries such as Brazil, Spain, and Pakistan, each hit by severe flooding in recent years, the Climate Change Impacts skills area grew significantly in 2025, by 96.4%, 60.6%, and 105.1% year-on-year, respectively.

Another notable example of environmental crises driving investment in green skills is in Cape Town, South Africa. In response to the 2017-18 "Day Zero" drought crisis, the city government responded by investing heavily in long-term resilience. Local residents were trained and employed in plumbing, leak detection, and water-efficient retrofitting to expand adaptation capacity quickly. Community-based water monitors and education programmes also created short-term green jobs directly tied to drought adaptation.

Growth in green skills in Financial Services - 3.1% in 2025 - may also be driven by subsectors at the forefront of climate exposure, such as insurance, where both transition and physical risks are increasingly material on the balance sheet. In this context, green skills are becoming central to managing systemic risk in the global economy.

Governments and businesses need to strengthen their understanding of the skills required to build anticipatory adaptation and resilience into organizations, even as they pursue mitigation efforts to limit global warming. While many mitigation-focused green skills are concentrated in sectors responsible for the bulk of emissions, resilience and adaptation are universal needs which will underpin competitiveness and stability across every part of the economy.

Case study 3: Zurich Resilience Solutions

Combining green, technical and advisory skills to support organisations navigating a changing climate

Overall, the Financial Services sector has one of the lowest green skill concentrations in examined inustries: 10.8% compared to a median of 14.7%. However, certain parts of the industry including insurance are moving more quickly to build and acquire green talent, as physical and transition climate risks have a growing impact on their business and customers.

Zurich Insurance Group has long been recognised as a global leader in risk management. In 2020, the company launched Zurich Resilience Solutions, a new advisory practice designed to move beyond traditional insurance and help businesses understand and address the growing risks of climate change and extreme weather. Within four years, what began as a one-person effort has grown into a 50-strong global climate team spanning multiple regions and a broad range of specialists.

The focus of Zurich Resilience Solutions is on making climate risk tangible and helping organizations to build long-term resilience in their operations. Advisory projects often begin with data-driven assessments of extreme weather impacts on organizations' value chains, which include infrastructure, supply chains, or workforce. The evolution of these risks with time under the different IPCC-defined climate scenarios are then evaluated, helping customers build the business case for resilience investments, to reduce key risks across their organizations.

The organization's leaders recognised that addressing climate resilience requires a blend of technical and advisory capabilities. The team boasts a broad range of expertise, with many post-graduates and PhDs. Many are early-career professionals moving from academia or start-ups into their first corporate role, and together they represent a wide range of disciplines including climate science, engineering, data modelling, finance, and consultancy. Employees gain hands-on experience through projects, mentoring from senior staff, and direct engagement with customers, thereby learning to apply their expertise directly to customer challenges.

Building the team has meant identifying where deep expertise and green skills are essential, and where engineering and advisory skills are equally critical. Rather than simply hiring only for experience, the leadership team also looks for potential, adaptability, and curiosity—traits that allow people to grow into emerging roles as climate risks and the tools and skills used to understand and assess them evolve. The result is a team equipped not just to model climate futures, but to guide companies through the skills and strategies needed to manage them, using state-of-the-art tools and data developed by the team.

"The skill sets that young professionals bring are very impressive. One of the most rewarding aspects of my role is experiencing how they utilize these skill sets, working collaboratively and engaging with the many stakeholders and experts in our large organization, to support our customers' increasingly complex risk management challenges."

Dr. Amar Rahman | Global Head Climate and Sustainability Solutions, Zurich Resilience Solutions, Commercial Insurance

Today, Zurich Resilience Solutions is one of Zurich's fastest-growing businesses, reflecting the demand from companies worldwide to better understand and manage climate risk. With a diverse team, an entrepreneurial culture, and a focus on making risks real and relatable, Zurich is equipping businesses with the skills and insights needed to thrive in a more turbulent climate future.

Chapter 2

• •

• • • • • • • •

• • •

• • • •

• • • • • • • • • • • • • • • • • •

••••••

••••••

• • • • •

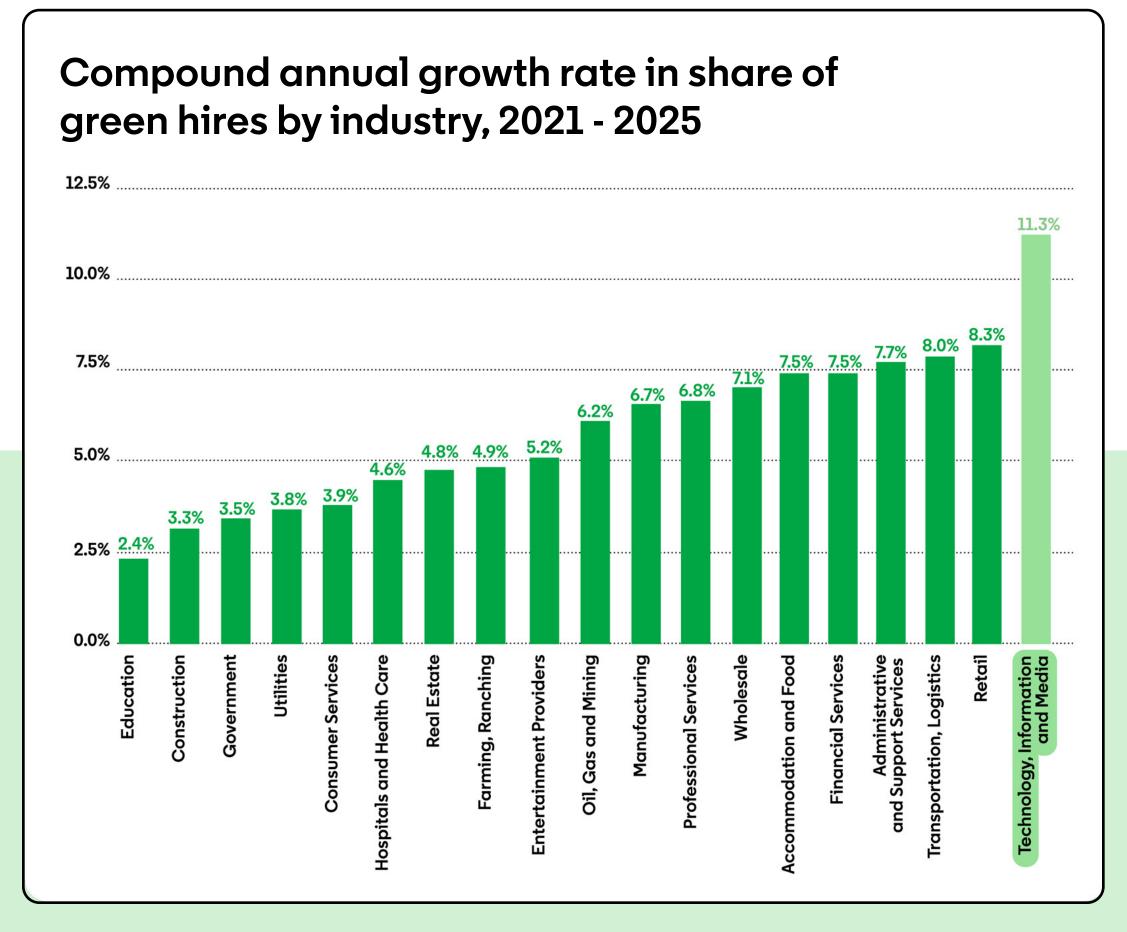
• • • • • • • • •

• • • • •

 \bullet \bullet \bullet

Al & Green Skills

...


• • • • • • • •

 \bullet \bullet \bullet

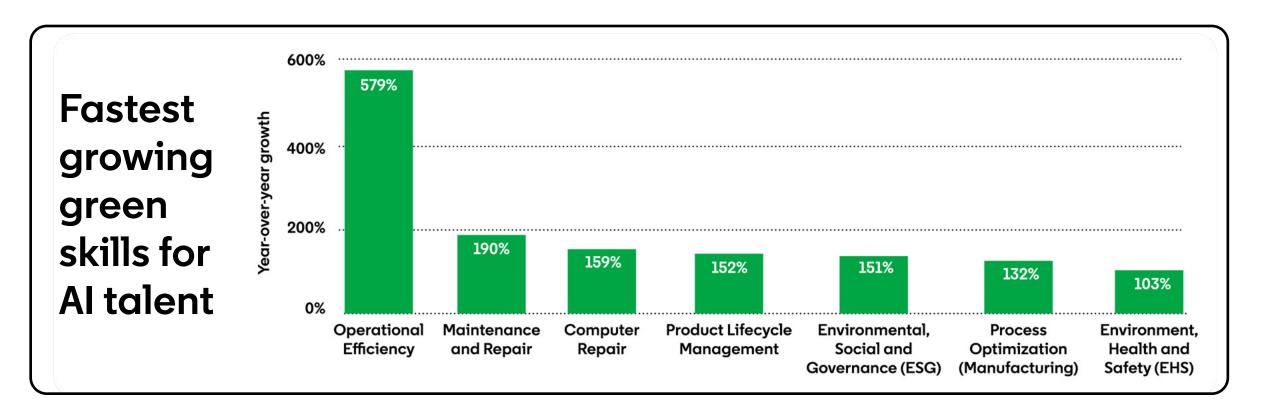
The climate & energy transition and the rise of artificial intelligence (AI), two of the biggest transformations in the world of work, are unfolding at the same time. In 2024, global corporate investment in AI <u>reached</u> \$252.3 billion, while global investment in the energy transition <u>exceeded \$2 trillion</u>. This twin transition is changing how we produce and use energy and resources, and it is redefining the skills and roles needed across the workforce.

As we enter the AI era, the Technology, Information, and Media industry has the highest average annual growth in the share of workers hired with green skills across all industries in our research, with significant acceleration seen in recent years.

Two focus areas connecting AI to climate outcomes drive this trend. First, businesses are seeking to address AI's resource intensive nature. "Sustainable AI" refers to efforts to manage the environmental impacts of the construction and operation of data centers. At the same time, businesses view AI as part of the solution. "AI for sustainability" builds upon the optimism that AI will unlock new solutions.

While the future is uncertain, we can work to shape the best possible outcome—by ensuring that green and AI skills are developed together. This approach helps ensure workers are not left behind as AI advances, and that AI's overall environmental impact is a net positive.

1


The pursuit of sustainable Al

Efficiency, repair and maintenance: critical skills for sustainable Al.

The rapid expansion of AI is a significant contributor to rising global electricity demand. According to the IEA, data center electricity consumption has grown by around 12% per year since 2017 - more than four times the rate of total electricity consumption - and is projected to more than double to 945 TWh by 2030. Electricity is not the only resource at stake. Managing water demand requires skills that range from engaging with local communities that share resources to building, maintaining, and increasing the efficiency of physical infrastructure. Reducing material waste as chips and other hardware are frequently upgraded and replaced, and mitigating emissions in the data center construction and operations supply chains, pose additional challenges.

Companies at the forefront of Al are already hiring for and developing the skills needed to manage these impacts. Among users identified as "Al talent" on Linkedln, skills such as Operational Efficiency (+579%), Maintenance & Repair (+190%), Product Lifecycle Management (+152%), and Process Optimization (+132%) have grown rapidly in the past year.

There are early signs that these efforts are paying off. Google <u>reports</u> that the median Gemini prompt used 33 times more energy in May 2024 than in May 2025. <u>Google</u>, <u>Microsoft</u> and other tech firms have also reported ongoing reductions in their Scope 1 and Scope 2 emissions, due in part to the application of skills such as operational efficiency and product lifecycle management.

However, as AI hyperscalers continue to reduce their Scope 1 and Scope 2 emissions, they are simultaneously <u>reporting significant increases in Scope 3 emissions</u>., The sources of these additional emissions in their supply chains are the embodied carbon linked to the manufacturing of steel and cement used in data center construction, as well as producing the hardware like chips and server racks that power AI. In this sense, sustainable AI is as much about investing in efforts to decarbonize supply chains as it is in increasing renewable energy production, and our data show skills development in the tech industry across both of these areas.

For example, Dell Technologies <u>estimates</u> that the mining, manufacturing, and transportation associated with a single standard tower server generates roughly 1,200 kg CO₂e. One strategy hyperscalers can deploy to manage their Scope 3 emissions is to increase the useful life of this crucial infrastructure in its own facilities and find ways for other companies and organizations to reuse those materials in ways that keep them out of landfills.

These challenges are helping to make skills like operational efficiency, maintenance, repair, integrated supply chain management, and product lifecycle management among the fastest growing green skills in the tech industry in nearly every country in our study, including India, Brazil, France, Germany, Australia, the United Kingdom, and the United States. For example, Operational Efficiency grew by 71.1% in the US technology industry, and by 110% in the Indian technology industry.

Reducing emissions from AI will require more than a transformation of the tech workforce. It will also demand large-scale development of new skills in manufacturing to produce more sustainable materials that feed into tech supply chains.

Efforts like Inco Academy's <u>Green Digital Certificate</u> instruct workers in tech and IT on these skills. Participants learn how to deploy strategies and tools for managing the energy required to run the applications they develop and reducing e-waste. Reaching workers in countries around the world, including Ghana, Indonesia, Egypt, Canada, and Kenya, the curriculum focuses on sustainable design principles, basic carbon accounting, and systems thinking.

Some of the biggest players are already investing in this shift. In 2024, Microsoft's Climate Innovation Fund invested in Sweden's Stegra (formerly H2 Green Steel), which is building the world's first large-scale green steel plant, capable of <u>cutting emissions by up to 95%</u> compared to conventional steelmaking.

Collaboration will also play a big part. In February 2025, over 100 partners including 37 tech companies, eleven countries, and multiple international organizations joined forces under the Coalition for Environmentally Sustainable Artificial Intelligence (AI) with the aim of ramping up global momentum to place AI on a more environmentally sustainable path.

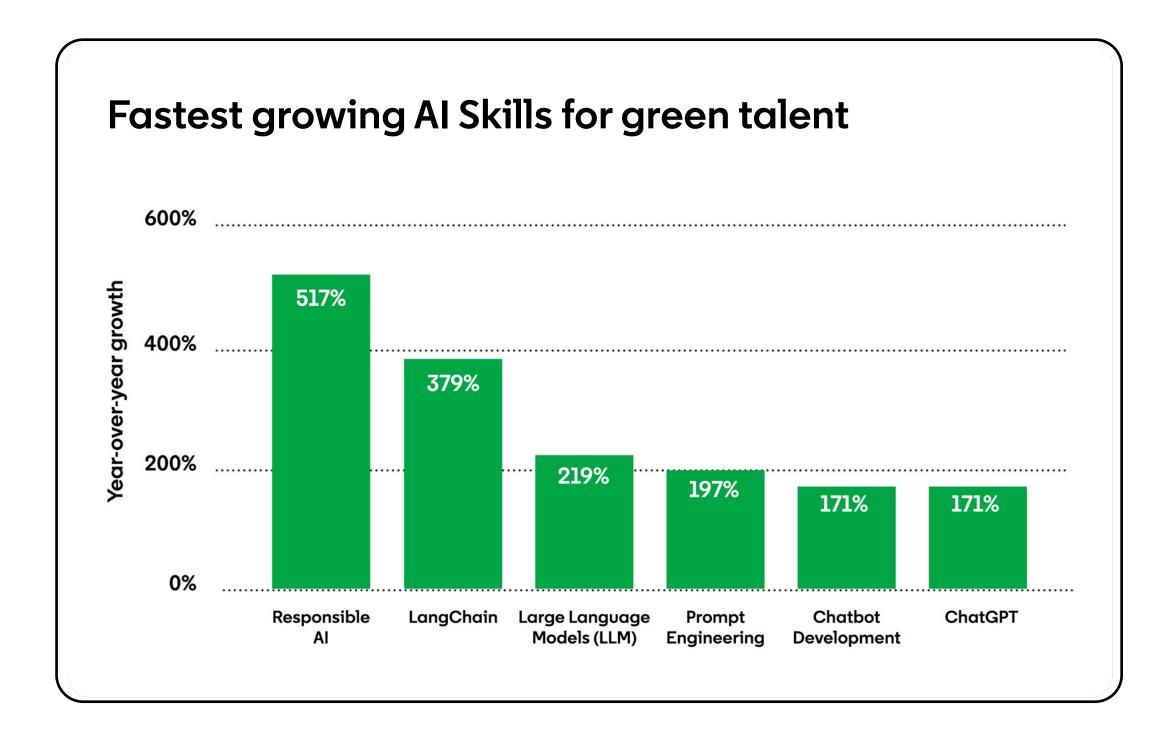
Al for Sustainability

A twin transition requires a combination of green and Al skills

Al has vast potential to accelerate sustainability outcomes. It can forecast demand and enable more efficient distribution of electricity, optimize routes and schedules in supply chain logistics, reduce energy and materials use in manufacturing, improve energy and water management in real estate and construction, monitor and enhance crop productivity in farming, and forecast and reduce waste in retail. Realizing this potential will depend on combining Al capabilities with green skills, ensuring that technology is directed toward sustainable outcomes.

Many of these benefits are easy to picture but harder to quantify. A <u>recent IEA report</u> provides some indication of scale:

- In the energy sector, AI applications could cut outage durations by 30-50%.
- In industry, process optimization through AI could deliver energy savings greater than Mexico's total 2024 consumption.
- ullet In transport, uptake at scale could save energy equivalent to that used by 120 million cars.

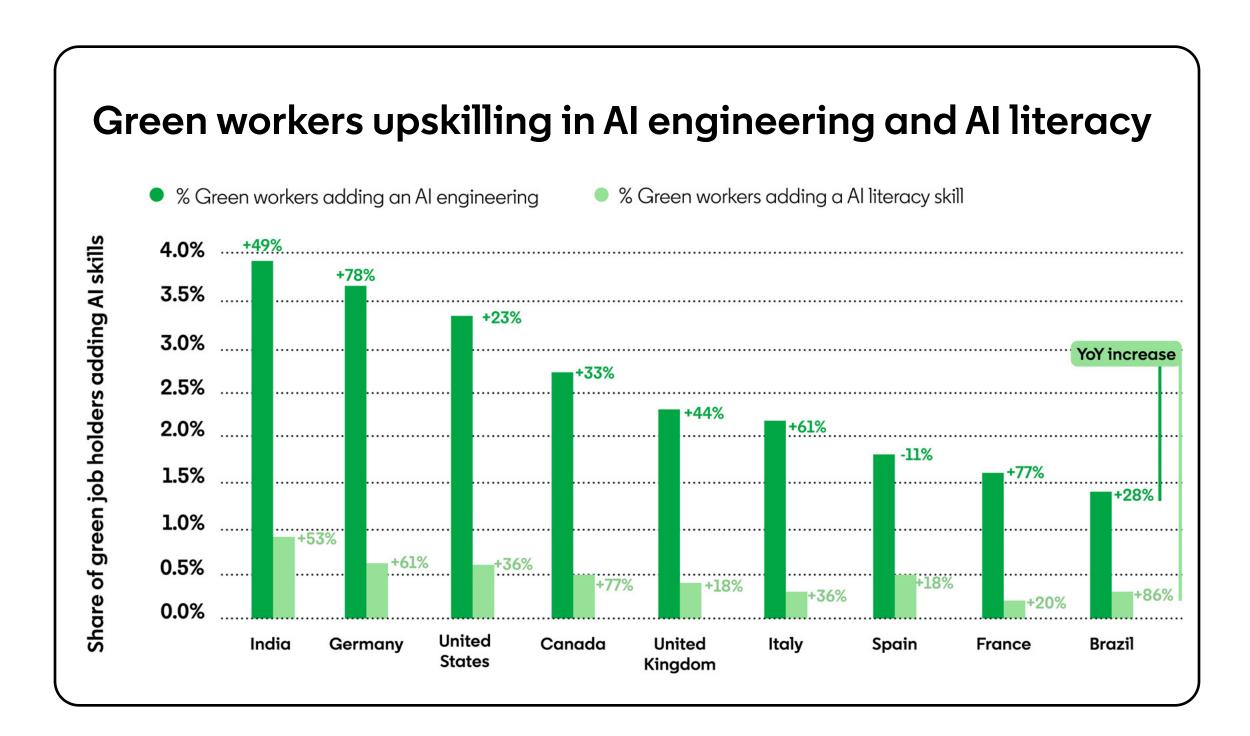

Individual businesses are beginning to see results from applying AI to sustainability challenges. Unilever, for example, has introduced predictive AI systems to stock freezers with ice cream during heat waves. By combining weather forecasts with real-time stock data, the company <u>reduced raw material waste</u> by 10% while boosting sales by up to 30% in some markets.

But Al technologies are not inherently "green." Their contribution depends on how businesses and governments direct them. Realizing Al's sustainability potential will require employees—an ever-growing share of the workforce tasked with delivering on sustainability objectives—to combine Al and green expertise. These "twin transition skills" enable workers to play their part in the two parallel transformations reshaping business.

LinkedIn data shows early signs of this shift, with green talent increasingly adding AI skills to support their work. However, the overall number of workers with both AI and green skills remains at a very low baseline.

In 2025, 3.1% of green talent across G7 countries (excluding Japan) reported at least one AI engineering skill, which are the skills needed to build, maintain, and deploy AI technologies.

While these numbers remain low, they represent rapid year-on-year growth of 38.6% and 55%, respectively. Realizing Al's sustainability potential will require workers to use both Al and green expertise.



The USA and China continue to host the vast majority of companies leading the development of AI systems and physical AI infrastructure. Yet other economies also have opportunities to carve out advantages.

European companies, for example, hold <u>more than half the global market share for industrial automation</u> <u>solutions</u>—a critical enabler of AI deployment across a wide range of manufacturing and industrial processes. To build on this strength, the EU launched the <u>AI Continent Action Plan in April 2025</u>, aimed at improving access to large, high-quality data; strengthening AI skills and talent; accelerating AI adoption in strategic sectors such as healthcare and automotive; and simplifying regulation.

European countries are well represented among those where green talent on LinkedIn are adding AI engineering and AI literacy skills in 2025, though behind India where 3.9% of green workers that upskilled in 2025 did so in AI, up 49% year-over-year for AI engineering skills.

Case study 4: Schneider Electric

Building the Al-and-green skills workforce behind the next wave of digital infrastructure

Schneider Electric is a global energy-technology leader operating across more than 100 countries, with ~160,000 employees and a broad partner ecosystem. Schneider is regularly celebrated as a leader in sustainability; the company has been on the CDP's Climate Change A List for 14 consecutive years and was named the World's Most Sustainable Company by TIME Magazine and Statista in 2024 and 2025. At the same time, the company's products, solutions and services enable emissions reductions and reduced inefficiencies for their clients.

The company's expertise in electrification, automation, and digitalization is now in high demand, driven by an inflection point in AI: the technology is accelerating the need for efficient, resilient power and cooling systems, as well as the skills to design, deploy, and operate them in support of sustainability goals.

Schneider is directly involved in the AI boom as a provider of power solutions, automation, and cooling for data centers. In 2024, Schneider Electric and NVIDIA <u>announced a collaboration</u> in advancing R&D initiatives for power, cooling, controls, and high-density rack systems to enable the next generation of AI factories across Europe and beyond. The challenge related to data centers is not only technical, but also about building the workforce able to deliver these solutions efficiently and sustainably.

For Schneider employees supporting AI data centers, this means building capabilities not just in traditional electrical and mechanical engineering, but also in liquid cooling, advanced energy management, digital twins, and systems integration. The company is also encouraging cross-training across functions: for example, bringing together teams in product design, software, marketing, quality and operations. Employees are learning how Schneider's technologies interact with the broader ecosystem of AI workloads, renewable energy sourcing, and grid integration.

Internally, Schneider is embedding AI into its own operations and customer offers. A global AI Hub operating in the US, India and France develops applications ranging from energy analytics to generative AI productivity tools. All employees - the vast majority of which already hold green skills - are now required to complete AI training. Alongside digital, AI, data, and cyber, sustainability and circularity are named among Schneider's top priority skills for the workforce of the future.

"By continuously listening, adapting, and investing in our people, we can build a future-ready workforce—one that is equipped not just to meet change but to lead it."

Charise Le | Chief Human Resource Officer, member of the Executive Committee.

The company is actively planning for the "twin transition" of digitalisation and sustainability, ensuring its workforce is equipped not only with technical know-how in areas like energy management and circular design, but also with the consultative and human skills needed to guide clients through their decarbonisation journeys.

To manage this transformation, Schneider is moving to a skills-first model, codifying roles and capabilities across its global workforce and embedding sustainability into mandatory learning. For example, ecodesign training which was once confined to R&D has been rolled out across a wider set of functions so that sustainability principles guide product development, industrialization, sales, and customer engagement. Over 44,000 participants have now undertaken this training. The company doesn't treat green skills as a standalone area but as part of the core skill mix it expects all employees to build.

Chapter 3

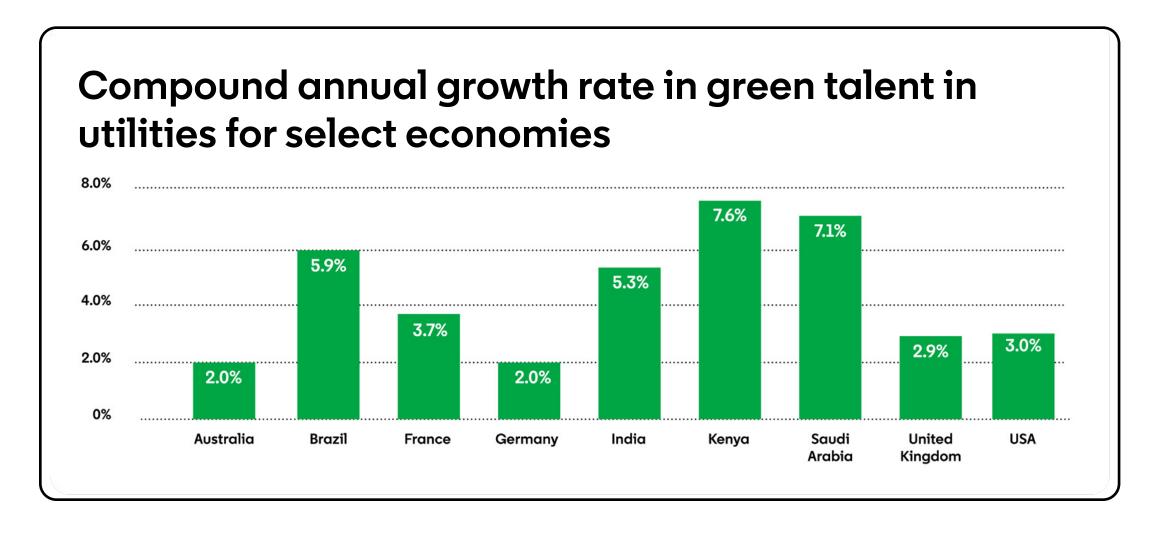
Pivotal industry trends & cross-sector shifts

The Energy Sector

Green skills growth in the Energy sector is not fast enough to keep up with growing demand for renewable and nuclear energy.

In one of the most ambitious outcomes of COP28, the world pledged to triple renewable energy production by 2030. This will require a rapid expansion of green jobs, from technical roles to many supporting functions needed in a mature industry.

The Utilities industry, which includes renewable energy generation, already has one of the highest green talent concentrations worldwide (29.6%), with strong growth both year-on-year (5.6%) and over 2021–2025 (5.3%). Even so, the industry may struggle to keep up with rapid growth in electricity demand: the share of green hiring in Utilities eclipsed 1-in-3 hires in 2025.


The challenge of ensuring the sector has the green skills it needs is urgent. The IEA <u>forecasts</u> global electricity consumption to rise by 3,500 TWh (4% annually) over the next three years—equivalent to adding Japan's annual consumption every year. Renewables and nuclear are expected to meet this growth, with renewables alone providing about 95%.

The imperatives are to produce more renewable energy, improve energy efficiency across the grid, and deploy new technologies that enable effective energy management. LinkedIn data shows that the corresponding skills, such as photovoltaics, offshore wind, solar energy systems, smart grid, and battery management systems are among the fastest growing skills in nearly every country.

Much of this growth in electricity demand will serve the electrification of commercial and domestic heating, transport solutions and other societal needs. Conversely, much of the energy management work will happen at individual homes and businesses, requiring a substantially larger workforce that can install and maintain assets like heat pumps and EV charging stations that promote energy efficiency and are necessary for broad-based electrification.

Developing this workforce will require approaches that bring new pools of workers into the industry. Generation, an international nonprofit dedicated to preparing workers facing barriers to employment for in-demand jobs, launched programs targeting the need for people to support electrification as solar panel installers, retrofit advisors, and heat pump installers. Its program in Spain has helped more than 300 workers since 2022 secure employment to support the country's energy transition, including more than 200 working as solar panel installers. Most of these workers had no prior experience in energy production or building systems, demonstrating the high demand for workers once they have the necessary skills.

Strong demand for these workers to do these activities presents significant economic opportunity. However, women are significantly underrepresented in the Utilities and Construction industries. Without efforts to bring more women into these industries, there is a risk that gender inequality will expand through the energy transition. More broadly, women are less likely to have green skills than men. Without green skills efforts designed to support women entering this workforce, the dual goals of electrification and widespread economic benefit will be at further risk.

NUCLEAR IS TAKING ITS PLACE IN THE ENERGY TRANSITION AND DRIVING SKILLS GAINS IN UTILITIES

Trends in the Utilities sector show a clear push toward nuclear power, which provided around 9% of the world's electricity in 2024. The IEA estimates that annual investment in nuclear—covering both new plants and lifetime extensions of existing ones—has risen by almost 50% since 2020, exceeding USD 60 billion. This growth is supported in part by commitments made at COP28, where more than 20 countries pledged to triple nuclear capacity by 2050.

Innovation is also reshaping the nuclear landscape. Dozens of small modular reactor (SMR) designs are under development, seen as a key solution for providing continuous electricity to power-hungry data centers that AI technologies rely on. The UK and US governments' recent announcement of USD 19 billion in joint investment in new UK-based nuclear reactors, as well as investments in nuclear from Microsoft and Google worth USD 35 billion combined, underscore the role governments and companies see for nuclear energy production.

Other countries are returning to nuclear energy in response to pressures such as global conflict and volatile oil and gas prices. In 2022, France <u>announced</u> a major expansion of its already large nuclear program, with plans to construct up to 14 new-generation reactors.

This renewed momentum is driving hiring activity across the nuclear energy industry. In the US, the LinkedIn Hiring Rate for the nuclear energy industry is 33.4% higher than the hiring rate for the American workforce overall, outpacing other segments of the US energy industry.

Case study 5: Octopus Energy Services

Making renewable energy work for UK homes through a growing workforce

The <u>UK Government</u> has identified shortages in engineers that can install green household technologies as a critical barrier to achieving its sustainability targets. Alongside government responses including the <u>Heat Training Grant</u> (HTG) <u>easing a series of planning rules</u>, individual companies are also acting to address skills shortages.

Octopus Energy Services, part of Octopus Energy Group, has grown rapidly since 2018 - by 2500 employees in 2024/25 alone. Today it employs around 4,000 people in the UK, working in up to 17,000 homes each week to install low-carbon technologies including heat pumps, solar panels, EV chargers and smart meters. This work connects customers to Octopus Energy's 5GW renewable energy portfolio; reducing energy costs while supporting the UK's decarbonization efforts and energy security.

Octopus Energy Services workforce comes from two main sources: apprenticeships and the hiring and reskilling of engineers with existing transferable skills.

Interest in working at Octopus is high. When the company launched its heat pump apprenticeship programme in 2024, 2,000 people applied in the first three weeks. Apprentices are paid while completing their training and can expect to earn over £40,000 a year by the time they finish the 3-year program, with opportunities to progress into mentorship and management roles.

Among already qualified workers, many people joining Octopus are plumbers and gas boiler engineers. Octopus can retrain a qualified plumber or boiler installer in as little as two to three weeks at one of its inhouse training centers. To date, thousands have been reskilled in this way.

The company's hiring process deliberately places greater weight on soft skills than technical expertise. "We can teach the technical side," explains CEO John Szymik, "but our people can spend days inside customers' homes, so communication and trust building skills are essential." Octopus recruits for customerfacing skills as much as for engineering credentials, knowing that installers also act as educators, answering questions about sustainability and building confidence in new technologies.

Once inside the organization, many employees gain new competencies. Many people who joined as smart meter installers, for example, have progressed to installing EV chargers, while heat pump plumbers have expanded into solar roofing. This multi-skilling enhances green career pathways and helps the company balance seasonal demand.

The appeal of working at Octopus is driven by several factors, according to Szymik. Many employees are motivated by the chance to contribute to climate solutions. At the same time, they see the opportunity to secure in-demand skills and a well-paid job for the future.

"There are so few apprenticeship opportunities around Leeds, especially when you have rent to pay and can't take on minimum wage apprentice roles. This opportunity has changed the trajectory of my life... I'll be able to become a home owner, and feel comfortable enough financially to start a family."

OES Apprentice

With 1,600 heat pump engineers at the company today, Octopus estimates the UK will need 100,000 in the coming years. Scaling its workforce and training capacity is therefore critical, and the company has invested in modular training academies that can be scaled, and even physically moved, quickly. Already today, they estimate they could deliver training to upwards of 6,000 engineers per year.

Case study 6: Iberdrola and Neoenergia

Expanding opportunities and strengthening the energy workforce through the School of Electricians

lberdrola is a major energy firm headquartered in Bilbao, Spain. It operates in over 13 countries including the United States, United Kingdom, the European Union, Brazil and Australia. As of the first half of 2025, the company had operational renewable capacity of 47,624 MW and planned further investments of €58 billion including €21 billion for its renewables business between 2025 and 2028.

As part of its push to expand its renewable capacity, Iberdrola identified green skills shortages as a major challenge that it must play a role in addressing. The company commissioned and co-published the <u>Green Skills Outlook</u> in 2024, and committed to investing alongside governments to build green skills that can deliver sustainability goals and address other societal needs in parallel.

One example of Iberdrola's approach can be found in Brazil, where Neoenergia – part of Iberdrola Group – is tackling two critical green skills challenges at once: a shortage of qualified electricians and the underrepresentation of women in technical roles in the energy sector. According to the IEA, in 2018, women accounted for 20% of the energy industry's workforce in 2018, despite making up nearly 40% of workers globally.

The School of Electricians was created to address both of these challenges, generating employment opportunities while helping the company to increase the supply of the skilled labour needed to modernise, expand and service Brazil's energy grid.

Initially created in 2013, the School launched women-only training classes in 2019, which led to a significantly higher female enrollment. The School now targets at least 35% female participation in its mixed-gender cohorts.

The School of Electricians offers free programs lasting from 3 to 10 months, combining theoretical and practical training in grid implementation, maintenance, safety, and operations. Graduates leave ready to work in electricity distribution; a strategic area for Neoenergia and for Brazil's energy transition.

Since its inception, over 6,500 people have been trained in states including Bahia, Pernambuco, Rio Grande do Norte, São Paulo, and the Federal District. The program has achieved a 76% employment rate, with many graduates hired by Neoenergia.

Among women, more than 1,300 have completed the training, with a 70% hiring rate. As a result, female representation among Neoenergia's electrician hires increased from 1.7% in 2019 to 51.9% in 2024.

Beyond creating jobs, the School of Electricians is helping shift social norms in communities where women's participation in technical fields has historically been limited. Graduates like Neila Salvatore, trained in 2015 and hired by Neoenergia the following year, describe the experience: "The school completely changed my life. I learned a new profession and I feel empowered".

By linking skills building and local economic development with inclusion, Neoenergia is demonstrating how investing in building green skills can simultaneously lift up communities and people while powering the energy transition.

Supply Chains and Logistics

Reducing emissions and developing resilience in value chains

Beyond renewable energy production and electrification, supply chains are emerging as a critical frontier in the transition to a more sustainable and resilient economy. As many industries make progress on addressing emissions associated with their energy usage and direct operations (Scopes 1 and 2), there are signs that businesses are turning their attention to this challenge. Analysis of corporate commitments to the SBTI found that the share of companies that target scope 3 emissions in their climate goals rose from 28% in 2022 to 67% in 2024.

Scope 3 GHG emissions typically represent around 90% of companies' total emissions, though with some variation according to industry. Because Scope 3 emissions are generated either before or after a product is delivered or consumed, they're also more complex to manage and reduce. In many cases, addressing Scope 3 emissions requires companies to engage with other stakeholders up- and downstream in their supply chains. In effect, their Scope 3 emissions are their suppliers' Scope 1 and 2 emissions.

Working with suppliers to reduce emissions and other negative environmental impacts requires companies to <u>build deeper relationships</u>; to understand their suppliers' challenges and, often, to provide various forms of direct support to help move them along their own decarbonization journey.

Within companies, anyone involved in the procurement of goods and services must build new skills and knowledge to understand the impact of the processes their goods undergo throughout their lifecycle; from sourcing, to processing, to transportation, storage and onward use.

Signs of increasing attention to this challenge show up in this year's data concerning fast-growing skills, with skills such as Responsible Sourcing, Integrated Supply Chain Management and Responsible and Sustainable Supply Chain management growing rapidly in many economies.

Skills needed to transform and sustainably manage supply chains are growing quickly in many major economies

Responsible Sourcing

269.8%

year-on year growth in the United States

Integrated Supply Chain Management

113.4%

year-on year growth in Brazil

Responsible Sourcing

118.2%

year-on year growth in the United Kingdom

Responsible Supply Chain Management

200.1%

year-on year growth in India

We also see evidence of green skills growing in nations that are major providers of the world's goods and commodities, which host many of the companies and workers that supply businesses across the globe. For example, in India, the proportion of hires in the Farming, Ranching and Forestry sector that were filled by individuals with at least one green skill continues to grow quickly; increasing from 25.2% in 2024 to 32.1% in 2025 (a year-on-year rate of increase of 28%). The share of green hires in Manufacturing in Indonesia and the Philippines grew by 10% between 2024-25; from 20.4% to 22.6%, and from 19% to 20.9%, respectively.

Case study 7: Natura

Achieving regenerative business through skills building in the value chain

Natura is a Brazilian multinational company specializing in cosmetics and personal care products, founded in 1969. Building on longstanding sustainability principles, in 2024, the company announced a goal to become a "regenerative business".

In pursuit of this goal, Natura uses an integrated profit and loss (iP&L) methodology that assigns monetary value to the company's externalities across three capitals: Natural, Social, and Human. The ultimate goal is to be "systemically positive," generating a positive impact on each capital.

The company knew that engaging and supporting their value chain would be critical to this goal. 98% of Natura's emissions are Scope 3. This makes suppliers the critical stakeholder in their sustainability transition.

"Our work to support suppliers to build green skills is grounded in a holistic view of change. If we want to achieve our goals, it's impossible to do it alone."

Angela Pinhati | Chief Sustainability Officer, Natura Recognizing their importance, Natura has launched several initiatives to build green skills and credentials among their suppliers and communities, which range from large companies to smallholder farming communities in the Amazon rainforest.

The Regenerative Alliance - a coalition of over 100 of Natura's strategic suppliers - is one of these programs. Natura runs intensive partnerships with priority suppliers, supporting their staff to embed methodologies related to human rights, risk assessment, deforestation and conversion free critical raw materials, and carbon accounting, and to build technical skills for decarbonisation, reversing biodiversity loss and promoting human rights.

Suppliers that have engaged in the Regenerative Alliance have become more competitive and resilient, benefiting the wider industry. For example, with Natura's capacity building and support, a fragrance glass supplier - Wheaton - reduced their own carbon emissions by 14%. Thanks to these sustainability credentials the company has won several new contacts with other large cosmetics companies that are also seeking to reduce their scope 3 emissions.

Other programs that engage Natura's value chain include their Embrace program, which recognizes and encourages the adoption of sustainability practices among suppliers, including through capacity building. In 2024, 96.88% of suppliers with identified negative impacts agreed to implement improvements.

In partnership with Benevides City Hall (PA) and local NGOs, the company also provides training in green skills to waste pickers, often living in vulnerable situations, improving their incomes and working conditions.

Natura's products are sold by over 3.5 million direct sales consultants across Latin America. These networks also receive training on sustainability development and environmental awareness as part of their onboarding. The underlying philosophy is that all employees, regardless of role, must carry sustainability competencies alongside their functional expertise.

Natura has undertaken steps to involve even more suppliers in its journey to becoming a regenerative business, including simplifying the onboarding process for the Embrace program to facilitate the participation of micro and small businesses as partners. These steps are showing results: In 2024, the company achieved an impact intensity of 2.5x (R\$2,5 socio-environmental value for every R\$1 of net revenue) and committed to achieving a goal of 4x by 2030.

Manufacturing

Circularity and growing demand for green solutions are driving skills needs in manufacturing sectors

Manufacturing underpins the world economy and is fundamental to any version of the climate and energy transition. The industry includes hard-to-abate segments like steel and cement, respectively responsible for approximately 11% and 17% of global emissions. At the same time, manufacturers are all building low-energy and electrified products like electric vehicles and home energy efficiency solutions that make emissions reductions possible.

The importance of manufacturing to economy-wide sustainability goals is reflected in the high concentration and increasing demand for green skills in the industry. Though it already has an above average green talent concentration among its workforce (18.7%), the average annual growth in the share of green hires in manufacturing is 6.4% and it continues to grow.

6.4%

Compound annual growth rate in share of green hires in Manufacturing industry, 2021-2025

The emissions generated in the process of manufacturing are only one part of the environmental footprint of physical products. The materials and resources used in production also carry an environmental impact which can be reduced when materials can be used at higher values for longer.

A push for circularity, which focuses on reusing, recycling, and extending the life of materials and products, and wider waste management are major factors behind the rise in green employment in manufacturing sectors. Indeed, in the UK, roles within the waste and recycling industry accounted for nearly 1-in-4 green jobs in the country in 2023.

Achieving greater circularity in manufacturing requires new skills in workforces involved across the design, production, installation and onward use of products. Process Optimization and Operational Efficiency account for the most common growing skills across all industries, and are growing substantially faster than others in sectors where they are particularly strategic: Transportation, Logistics and Supply Chain saw a median 51.5% year-over-year growth in the share of members adding Operational Efficiency; Manufacturing saw growth of 61.1%; and Utilities by 106.7%.

As with other trends in this year's data, it's notable that circularity is an aspect of green transitions that can provide <u>immediate and long-term business benefits</u>. These include reduced waste, greater efficiency, and process and business model innovation. For example, Sellpy, a peer-to-peer platform for secondhand fashion operating across Europe, has significantly increased its revenue contribution to the H&M Group, <u>doubling its share since 2022</u>.

Growing demand for low energy and clean tech solutions such as home heating and cooling systems, home-scale renewables and EV infrastructure that support and leverage electrification are creating demand for new skills in many parts of the manufacturing industry. Shortages of workers in these domains are driving companies like Trane Technologies to invest in skills-based career pathways.

EV SKILLS CONTINUE TO GROW EVEN AS WORKFORCE GROWTH LEVELS OFF

Electric vehicles (EVs) remain one of the fastest-growing parts of the green economy, with global sales expected to <u>reach 22 million global passenger EV sales this year</u>; a jump of 25% from 2024. China dominates the EV market, making up almost two-thirds of global sales, with Europe at 17% and the US at 7%. Emerging markets are also expanding quickly, driven by strong sales from Chinese automakers.

However, LinkedIn data shows that the growth in the share of members in the manufacturing sector (including automotive manufacturing) with EV skills has slowed down by 35-45% in many major markets (US, UK, France, Germany) with automakers unsure about continued EV expansion plans.

Many automakers built up factory capacity and staffing through 2023–24, meaning that while production and sales continue to climb globally, workforce growth has leveled off and even slowed in some markets including the US and EU where there is <u>more uncertainty</u>. Nonetheless, overall, the proportion of workers in Manufacturing with at least one EV-related skill continues to grow at a median rate of 6.5%.

EV manufacturing requires both traditional automotive expertise and new green skills. Workers often bring prior experience in vehicle production, but sophisticated EVs with complex computing systems also demand knowledge of software, electronics, and battery systems, as well as how to reuse or dispose of components like batteries. These needs reflect the presence of skills like Product Lifecycle Management, Process Optimization and Hazardous Waste Management in the fastest growing skills globally.

These skills' needs extend beyond car plants. As EVs integrate with electricity grids, they create demand in areas such as energy management and charging infrastructure. As a result, skills including Automotive Repair and Electrical Repair feature prominently in the list of fastest growing skills in industries like Transportation, Logistics, & Supply Chains and Real Estate & Equipment Rental Services.

Case study 8: Trane Technologies

Delivering innovative skills programs to create a workforce capable of meeting demand for green technology

Trane Technologies designs, manufactures and delivers heating and cooling solutions for buildings, industry, homes and transportation around the world. The company also touts the largest HVAC services footprint in the United States.

Their industry is facing a skilled labor shortage, with roughly 110,000 unfilled HVAC technician jobs across the USA. The gap in workers is expected to double, reaching an alarming 225,000 vacant positions within the next five years. This shortage is coming at a time where more customers are demanding low-carbon and energy-saving cooling solutions. As many parts of the world warm, the IEA estimates that by 2050, around 2/3rds of the world's households will have an air conditioner. Responding to the skills shortage and significant growth in demand, the company launched the Trane Technician Apprenticeship Program (TAP) in 2023.

Available nationwide in the US, TAP is a four-year paid programme that recruits and trains aspiring HVAC technicians regardless of experience or education. Nearly all (99%) participants do not have a four-year college degree, and many come from outside the HVAC industry.

While in the programme, participants undergo 2,000 hours of on-the-job training and over 140 hours of technical instruction per year. During that time, apprentices earn a full-time wage and receive raises with demonstrated skill attainment. To further ensure that their programme is inclusive, a portion of the TAP is offered online; lowering transportation costs, ensuring training consistency across geographical regions, and reducing the cost of implementation & scaling.

To date, Trane Technologies has hosted six cohorts and a combined total of 243 apprentices participating in the program in more than 35 states. Nine apprentices have successfully completed the program, with 13 more on track to graduate by the end of 2025. The proportion of women, racially or ethnically diverse employees has increased year-on-year.

Apprenticeships are only one part of the company's drive to secure talent to deploy its technology. In the last five years, Trane Technologies has trained 15,000 technicians, and they plan on training another 50,000 by 2030. With 27% percent of workers in the skilled trades set to retire in the next ten years and the demand for HVAC technicians growing by 5% annually, training is a critical part of the company's talent approach.

Much of that training will be conducted at Trane Technologies' Advanced Technology Training Center (ATTC). Located on the company's Davidson, North Carolina campus, the ATTC is the largest HVAC training center in the world. It can accommodate up to 4,500 students annually at full capacity and can deliver 108,000 training hours per year. Inaugural classes at the ATTC started in September 2025.

"We prioritize investing in our global workforce because we know that continuous learning and development are essential to cultivating a sustainable, innovative organization," said Michelle Murphy, Vice President of Human Resources for Trane Technologies' Americas Region. "By nurturing talent and fostering a collaborative learning environment, we're building a strong foundation for the future of our business and advancing the HVAC industry as a whole."

Trane Technologies has seen significant growth and transformation over the last five years, including delivering 12% compound annual revenue growth. With this growth, the company has also reduced customer carbon emissions by 237 million metric tons since 2019, on track to meet its Gigaton Challenge goal to reduce one gigaton of customer emissions by 2030.

Policy Recommendations

Over the last few years, governments, multilateral organizations, the private sector, NGOs, and academia have come together to elevate skills and jobs in global climate conversations. The Green Jobs for Youth Pact by UNEP, UNICEF and ILO raised awareness of the need for skills development and the opportunity to be realized for young people. The COP29 and COP30 Presidencies have elevated workforce issues to the highest levels of climate diplomacy with an explicit emphasis on jobs, workers and human development in the Action Agenda for each COP.

In keeping with the shift from ambition to implementation, the COP30 Presidency and the Brazilian Confederation for National Industry launched Sustainable Business COP (SBCOP), a private sector platform that includes a working group focused on green jobs and skills. Likewise, Business at OECD and the International Organization of Employers released a joint statement on the importance of green skills to the economy. The International Renewable Energy Agency launched a Skills Pledge for Tripling Renewable Energy Production. Together, these milestones reflect an important shift: the climate and energy transition is now recognized as a skills transition.

As countries move from climate pledges to implementation, workforce development comes into sharper focus. Only with a skilled workforce can policy and business leaders turn ambition into action and unlock economic opportunity. Restated, investing in green skills development is not just a climate and energy imperative; it is an economic one.

The following recommendations offer a roadmap for policymakers and business leaders to secure the talent they need for resilience, efficiency, innovation and opportunity in the climate and energy transition.

1. MAKE WORKFORCE TRAINING A CORE PART OF CLIMATE AND ENERGY POLICY.

Every national climate and energy strategy should include plans for training, reskilling, and upskilling. Whether adapting to climate impacts or deploying new technologies, success depends on having a skilled workforce. LinkedIn data shows demand for green skills is growing twice as fast as supply. Without action, many roles may go unfilled. Explicitly naming a skilled workforce as a necessary input into achieving climate and energy policy will give clear signals to education and training providers, as well as the private sector, to similarly invest in green skills development. By embedding workforce plans into climate and energy policy, government can demonstrate how those investments will also drive job creation and economic resilience.

2. IMPROVE COORDINATION ACROSS GOVERNMENT.

Agencies focused on labor, education, and workforce should work closely with those leading climate and energy efforts. Siloed policymaking risks misalignment and missed opportunities. Countries can establish task forces or working groups to align climate and energy goals with workforce strategies and vice versa. This helps ensure training programs match real-world needs and that climate and energy investments translate into employment. Canada's Sustainable Jobs Partnership Council, the UK's Office of Clean Energy Jobs, Australia's Net Zero Economy Authority, and India's Skills Council for Green Jobs represent examples of this type of cross-ministry coordination in its early stages. Government agencies can also look to models from the private sector that facilitate greater engagement between HR teams with core operational functions. Companies like SSE, GE Vernova, and Trane Technologies explicitly call out workforce transformation in their sustainability reports. Governments can build upon this approach to ensure ambitious policies are backed by a commensurate talent pipeline.

3. UPDATE EDUCATION AND TRAINING FOR A CHANGING ECONOMY.

Green skills are increasingly relevant across all occupations. Policymakers should support updates to curricula at all levels, from primary education to universities and vocational programs. Continuing education and licensing requirements should also evolve to reflect sustainability competencies. This prepares both new graduates and mid-career workers to contribute to climate-related initiatives and adapt to both new jobs and changing job requirements. Program for students and early career professionals, in particular, should emphasize how broad climate fluency, particularly when paired with green and digital skills, is relevant across the world of work. Importantly, education and training systems that adapt quickly will boost economic competitiveness.

Policy Recommendations

4. TRACK GREEN JOBS AND SKILLS IN LABOR MARKET DATA.

Government statistical agencies should integrate green jobs and skills as part of regular labor reporting to guide investments and program design. Countries and sub-national governments that track these metrics can better anticipate talent shortages, target skills development programs, and measure the impact of their policies. For example, Terra Academia partnered with Linkedln in October 2025 to publish the French Green Skills Observatory, a potential model for other jurisdictions to consider moving forward. Many governments are already tracking the impact of Al across the domestic workforce, providing them with a rigor and set of methodologies to use in understanding the intersection of climate, jobs, and skills.

5. STRENGTHEN PUBLIC-PRIVATE PARTNERSHIPS.

Industry, government, and education providers must collaborate to address talent shortages. Sector-specific councils or regional coalitions can align training programs with employer needs, accelerate curriculum development, and facilitate the development of work-based learning opportunities like apprenticeships. These partnerships ensure training is relevant, scalable, and inclusive. They also are key ingredients to successful investment attraction efforts.

6. PROMOTE SKILLS-BASED HIRING AND TALENT DEVELOPMENT.

Hiring based on skills rather than degrees or job titles can unlock broader talent pools. LinkedIn research finds that hiring based on skills - rather than degrees or job titles - can expand green talent pools by 3.5x globally. Taking this approach also increases the representation of qualified women in talent pools for open positions. Policymakers can lead by example in public sector hiring and support standards for skill validation. Encouraging employers to invest in internal mobility and training also helps build a more agile and inclusive workforce. Skills based hiring is particularly useful in industries, like many of those in the green economy, where demand is growing fast enough that employers will need to look beyond traditional talent pools to fill open roles.

Conclusion

In many industries green skills are now recognized as bywords for skills that deliver what businesses and governments have always cared about - resilience, efficiency, competitiveness and innovation. Current policy and market dynamics may have weakened the last few years' growth in demand and supply for green skills, but businesses and governments cannot unsee reality; green skills are part of the essential skills mix for resilient economies and modern business.

We are now at a point where a more nuanced understanding of green skills and talent is needed among policymakers, educators and companies. They need to be able to see and react to shifting needs and gaps as green skills are combined with Al skills, applied in different industries and to different challenges; from mitigation, to adaptation, to circularity. How quickly green skills continue to grow and percolate through our economies depends on institutions getting this right.

LinkedIn looks forward to partnering with governments, policymakers, industry leaders, NGOs, education and training providers, and workers to accelerate green skills development. Together, we can realize the promise of the climate and energy transition: a more livable planet and thriving economies.

Methodology & Acknowledgements

This report represents the world seen through Linkedln data, drawn from the anonymized and aggregated profile information of Linkedln's one billion members around the world. As such, it is influenced by how members choose to use the platform, which can vary based on professional, social, and regional culture as well as overall site availability and accessibility. In publishing these insights from Linkedln's Economic Graph, we prioritize statistical accuracy as well as member privacy. As a result, all data show aggregated information for the corresponding period, following strict data quality thresholds that prevent disclosing any information about specific individuals.

Data in this report focuses on the following list of countries and encompasses data from January 2021 to July 2025 unless otherwise mentioned:

Algeria	Canada	Estonia	India	Luxembourg	Norway	Singapore
Argentina	Chile	Fiji	Indonesia	Malaysia	Pakistan	Slovenia
Australia	Colombia	Finland	Iraq	Maldives	Panama	South Africa
Austria	Costa Rica	France	Ireland	Malta	Peru	Spain
Bahrain	Croatia	Germany	Israel	Mauritius	Philippines	Sri Lanka
Bangladesh	Cyprus	Ghana	Italy	Mexico	Poland	Sweden
Barbados	Czechia	Greece	Jamaica	Morocco	Portugal	Switzerland
Belgium	Denmark	Guatemala	Jordan	Nepal	Puerto Rico	Thailand
Bolivia	Dominican Republic	Hong Kong SAR	Kenya	Netherlands	Qatar	The Bahamas
Brazil	Ecuador	Hungary	Latvia	New Zealand	Romania	Trinidad and Tobago
Brunei	Egypt	Iceland	Lithuania	Nigeria	Saudi Arabia	Tunisia

Turkey

United Arab Emirates

United Kingdom

United States

Uruguay

Venezuela

Vietnam

Skills are the main building blocks of the insights in this report. They are sourced from LinkedIn members (skills explicitly listed on member profiles or inferred from other aspects of members' profiles, such as job titles, fields of study, etc.) or from job postings. Skill names are standardized by expert taxonomists, who have identified more than 41,000 skills across 249 skill categories. Our taxonomists have identified 1,200 of these skills as green skills. They fall into twelve categories:

- Pollution Prevention
- Waste Prevention
- Energy Management
- Renewable Energy Generation
- Environmental Remediation (including Waste Management, Water Quality Management, Environmental Restoration, Habitat Restoration, and Urban Redevelopment)
- Ecosystem Management (including Natural Resource Management, Erosion Control, Biodiversity Conservation, Water Resource Management, Climate Change Mitigation,

and Climate Change Adaptation)

- Sustainability Education
- Sustainability Research
- Environmental Auditing (including Environmental Impact Assessment and Carbon Accounting)
- Environmental Policy (including Energy Law and Environmental Law)
- Sustainable Procurement
- Environmental Finance

GREEN TALENT SUPPLY

- We use aggregated member profile data to measure green talent supply.
- For more information on how we implement these metrics using various components of the Economic Graph, please refer to Kaura, A. (2024). "Understanding the Green Transition." LinkedIn Economic Graph Research Note.
- Note that as our skills list evolves to include more skills, we backfill our metrics for prior periods as well. This can result in changes in levels and growth estimates compared to previously released work. However, we will update the entire time series from 2021 onwards in every successive release to ensure continuity in reporting.

- Growth in skills and job titles is calculated using the share of members (or job postings as specified) in all cases. Further, to protect member privacy and ensure data quality, we apply the following thresholds in our reporting:
 - For fastest growing skills, we only use skills with at least 100 skill adds in the last year (2024) in a given country or country/industry combination.
 - For fastest growing jobs we only use job titles that at least 100 members have added to their profiles in a given country or country/industry combination.

Data on the EV workforce comes from Kaura, A. (2024). "Accelerating the Transition to Electric Vehicles." LinkedIn Economic Graph Research Note. When discussing this workforce in the automotive industry or otherwise, we refer to the following skills from our Economic Graph skills taxonomy:

•	L	lec ⁻	tric	V	el	hic	les

Automotive Design

- Automotive
- Fuel Cells

Powertrain

Batteries

 Nickel Manganese

Graphite

Battery

Technology

Vehicles

- Electric Motors
- Electric Transmission

- Power Systems
- Power Distribution

 Battery Charger Automotive

Electrical Systems

- Systems Automotive Engineering

Management

- - Automotive Electronics

Hybrid Electric

• Electric Power

Energy Efficiency

Compliance

Environmental

Charging

- Electric Utility
- Smart Grid

Energy Policy

• Lithium-ion Batteries

Cobalt

- Power Transmission
- Lithium Batteries
- Lithium

- Battery Electric Vehicle (BEV)
- Battery Testing
- Electric Cars
- Electric Propulsion
- Environmental Policy

Electricity Markets

Power Generation

For more details on our industry classification, please refer to this documentation.

LinkedIn Green Skills Report

2025

