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ABSTRACT6 
 

Women are underrepresented in STEM, both in the United States and 
internationally. Prior literature has primarily focused on disproportionate 
outflows from STEM that occur during the educational process, from K-12 
through college. However, the eventual goal is equitable representation 
within STEM jobs. We investigate millions of LinkedIn profiles in the 
United States to understand the transition from STEM degrees to STEM 
employment. We examine the large drop-off occurring between graduation 
and the first year of employment, which is especially severe for women, 
with an approximately ten percentage point widening of the gender STEM 
gap (the proportion of workers in STEM that are men minus the proportion 
that are women) during this period. Using a Blinder-Oaxaca 
decomposition, we demonstrate that several factors impact this gap: major 
choice, STEM job posting views and applications, and the proportion of the 
local STEM workforce that are the same gender as the graduate. We 
estimate that if all of the measured factors were equal between men and 
women, women would be slightly more likely than men to persist in STEM 
employment. 
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1. Introduction 
 
Science, Technology, Engineering, and Mathematics (STEM) training and subsequent 

employment are important parts of a healthy economy and in many cases offer higher 

paying, stable pathways into career progression (Katz & Margo, 2014; Manski, 1992). In 

recognition of this, many countries, including the United States, have invested in 

initiatives aimed at encouraging STEM education and increasing the STEM workforce 

through immigration (National Academies of Sciences & Medicine, 2016). However, 

despite the potential benefits of careers in STEM, certain populations, particularly women 

and underrepresented racial and ethnic groups in the United States, remain 

underrepresented along the entire training to work pipeline, from elementary and 

secondary school through post-secondary education and employment.  

Previous research has mainly focused on underrepresentation and attrition in the 

educational STEM pipeline (Rodriguez-Solorio, 2022). However, while the STEM gender 

and minority disparities do grow during education, there is also known and documented 

widening of the disparities that happens between post-secondary education and STEM 

employment (Baird et al., 2017). Insufficient attention has examined the timing and 

reasons for the divergence at this juncture, despite the fact that it represents in many ways 

the most costly leakage in the pipeline. After years of STEM training, including post-

secondary education, a non-negligible fraction of graduates (both men and women) end 

up not working in STEM, leaving behind at least a portion of their gained human capital 

(Baird, Ko, et al., 2023). As underrepresentation affects women and underrepresented 

racial and ethnic groups more often, this creates entrenched inefficiencies for the 

economy and exacerbates existing equity shortcomings, as these populations are already 

earning less on average and end up in what may be lower paying career trajectories. 

In this paper, we use a proprietary data set of LinkedIn members from graduating 

cohorts 2019 through 2021 to examine the differences in outcomes between men and 

women transitioning from STEM post-secondary education to early career employment. 

We focus our attention on the drop-off that happens between graduation with a STEM 

degree and one year later, which Baird et al. (2023) show is the leakiest point of the 
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pipeline and the largest contributor to the expansion of the gender gap in STEM fields 

within the first five years. Specifically, the share of women in STEM fields decreases from 

40.3 percent for bachelor’s degree STEM graduates to 32.4 percent for bachelor’s degree 

graduates one year later.  

In this paper, we perform regression analysis and Oaxaca-Blinder decompositions 

and find that several factors impact the gender gap, including college major choice within 

STEM, STEM job search and application behavior, and the proportion of local jobs that 

are STEM and the proportion of STEM workers locally that are the same gender as the 

graduate. These results suggest that there may be early differences in desire or perceived 

fit for entry into STEM careers, or differences in women's perceived access to 

opportunities in STEM fields. This has important implications for policy options aimed 

at narrowing the gender gap, such as targeted mentoring programs and recruiting 

initiatives for companies, educators, and platforms such as LinkedIn.  

 

1.1. Related Literature 

The discourse around the underrepresentation of women and minorities in STEM fields 

often frames the discussion around a leaky pipeline model (Baird et al., 2017; Rodriguez-

Solorio, 2022). The gender STEM gap begins as early as middle school (Choney, 2018; 

Rabenberg, 2013). Gender gaps continue to widen through numerous junctures along the 

educational and professional path, including initial major declaration in college  

(Cimpian et al., 2020; Gottfried & Bozick, 2016; Rainey et al., 2018), retention in STEM 

majors (Sovero et al., 2021), graduation in STEM majors (Arcidiacono et al., 2016), and 

eventual employment in STEM fields (Baird et al., 2017). 

Rodriguez-Solorio (2022) provides an insightful overview of the existing literature 

on this issue and offers a comprehensive framework for understanding the attrition of 

women and minorities in STEM. In addition to tracking this attrition through various 

stages of formal education, Rodriguez-Solorio also highlights the importance of 

considering the influence of earlier stages in the educational pipeline, such as STEM 

preparation in high school, on later outcomes, including college persistence in STEM. For 

example, Card and Payne (2021) show that the gender gap in college persistence in STEM 
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is largely determined by differences in STEM preparation in high school (see also Sovero 

et al., 2021). 

The root causes of differential gender attrition in STEM education have been the 

focus of numerous studies, with the goal of finding solutions to increase representation. 

Ireland et al., (2018) summarize the findings of 60 studies and offer recommendations for 

improvement, and Eddy and Brownell (2016) provide a similar synthesis of research in 

this field. Additionally, Rodriguez-Solorio (2022) surveys the various programs aimed at 

increasing retention in STEM majors in college, offering insights into the types of 

initiatives that are most effective in addressing this issue. 

However, despite these efforts, the gender STEM gap continues to persist. While 

the leaky pipeline model provides a useful framework for understanding why this is the 

case, deeper analyses are needed to address this issue and ensure that women and 

minorities are properly represented in STEM fields.  

 

2. Data and Measurements 

We use for primary data source the education and employment records of U.S. 

members of LinkedIn. Additionally, we recognize that gender is not binary, but is a 

spectrum. Nevertheless, given data limitations, in this paper we use the binary 

conceptualization of gender, men and women. Furthermore, we rely on developed 

methodology by LinkedIn which infers gender based on pronouns and names, where 

feasible (and excludes them when we cannot with confidence infer gender.1  

A full description of the methodology for defining STEM occupations can be found 

in (Baird, Gahlawat, et al., 2023). We summarize the methods here, which rely on (1) 

classifying STEM degrees, (2) classifying STEM skills based on STEM degree holders, and 

(3) classifying STEM occupations based on STEM skills used in those occupations.  

 

 
1 The official LinkedIn gender methodology statement: “Gender identity isn’t binary and we recognize 
that some LinkedIn members identify beyond the traditional gender constructs of “man” and “woman.” 
If not explicitly self-identified, we have inferred the gender of members included in this analysis either by 
the pronouns used on their LinkedIn profiles, or inferred on the basis of first name. Members whose 
gender could not be inferred as either man or woman were excluded from this analysis.” 
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2.1. Classifying STEM Degrees 

For the purposes of this paper, which focuses on retention in STEM fields, we focus our 

attention on individuals who have earned a STEM college degree (associate’s, bachelor’s 

or graduate). However, it is important to note that our data is limited to those who have 

recorded their education degrees and fields of study on the LinkedIn platform. Therefore, 

our findings may not be generalizable to all individuals with STEM degrees. In order to 

define STEM fields, we use the U.S. Department of Homeland Security’s (DHS) STEM 

Designated Degree Program list of majors, which utilizes CIP (Classification of 

Instructional Programs) codes. The DHS based their list on the U.S. Department of 

Education’s National Center for Education Sciences definition of STEM fields. However, 

there may be limitations in the use of a single governmental source for defining STEM 

fields.  

 

2.2. Classifying STEM Skills 

Using this set of individuals, we create a novel classification of STEM occupations driven 

by STEM skills. This decision is not innocuous and has important implications for such 

outcomes as the estimated gender gap (Anderson et al., 2021). In our process, we first 

develop a list of STEM skills (most closely related to the classification approach of 

Rothwell (2013)). We define a STEM skill as one for which at least 100 members have 

added the skill, and in which the probability that a STEM graduate adds it is at least five 

times as likely as the probability that a non-STEM graduate adds the skill. We chose a 

threshold of five for several reasons. First, it separates two modes in the density of skill 

add ratios relatively cleanly (see Baird et al. 2023b), with the larger mass below the 

threshold representing non-STEM skills and the smaller density mass above the 

threshold representing STEM skills. Second, the threshold of five aligned the U.S. 

estimates of STEM in the workforce and gender ratios relatively closely to external 

benchmarks, such as Rothwell (2013) and Baird et al. (2017). Third, the threshold offers a 

clean, intuitive separation point.  

The most commonly added STEM skills in the United States are Python 

(Programming Language), SQL, Engineering, Java, JavaScript, C++, MATLAB, Software 
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Development, Linux, and C (Programming Language). Thus, the list is dominated by 

computer programming and engineering skills. The skill add ratio can be used to rank 

how STEM-focused a skill is, with the highest-rated STEM skills among common skills 

(at least 500,000 members globally have added it) being Core Java (34.5 times more likely 

for STEM degree holders), Spring Framework (32.2), Algorithms (27.9), Spring Boot 

(27.9), and C (25.1).  

 

2.3. Classifying STEM Occupations 

With the derived list of STEM skills, we next classify which occupations are STEM. We 

do so using the LinkedIn Skills Genome2, which calculates TF-IDF scores across members 

within occupation to determine the most important and unique skills to each occupation. 

We classify a STEM occupation as one which has at least one STEM skill in its top ten 

skills. Using the LinkedIn occupational taxonomy of occupation representative IDs 

(groupings of occupations yielding 3,194 occupations), 825 are classified as STEM in the 

United States, or 25.8 percent of the occupations.  

The most common STEM occupations in the United States include Software 

Engineer, Professor, Manufacturing Engineer, System Engineer, Data Analyst, Quality 

Assurance Manager, Engineering Manager, Mechanical Engineer, Director of 

Information Technology, and Design Engineer. The most core-STEM occupations (as 

defined in Baird et al. 2023b) are Geology Specialist, Exploration Manager, Java 

Consultant, Thermal Engineer, Geophysicist, Computational Biologist, Analytical 

Chemist, Professor of Chemistry, Research Instructor, and Bioinformatician. 

  

3. Results  

3.1. Descriptive Statistics 

We used this skills-based approach to estimate the proportion of LinkedIn members who 

work in STEM occupations in the United States, and found that 19.3% of the membership 

falls under this category. This is similar to the estimates made by other researchers such 

 
2 h#ps://engineering.linkedin.com/blog/2019/how-we-mapped-the-skills-genome-of-emerging-jobs 
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as Rothwell 2013 at 20% and Anderson et al. 2022 at 19.8%.  Our estimate is higher than 

the traditional estimates that are skills-based, such as the Bureau of Labor Statistics’ 

estimate of 6.2%.3 We acknowledge that our choice of a skills-based approach may have 

contributed to the higher estimate. Additionally, it is possible that the LinkedIn 

membership in the United States is more likely to participate in STEM occupations than 

the overall U.S. population, which may have also contributed to the higher estimate. 

Therefore, we caution that these findings should be interpreted with this caveat in mind. 

Baird, Ko, et al., (2023) have additional details on STEM statistics and trends in the 

United States using the same methodology as in this paper. We reproduce a selection of 

their estimates here, which serve as the basis for our regression analysis sample. For 

instance, we found that among sub-baccalaureate workers with STEM degrees, 40.6% of 

men and 19.0% of women are currently employed in STEM, resulting in a gap of 21.6%. 

Although the gap is somewhat smaller for bachelor's degree holders with a STEM degree 

at 14.6% (47.7% of men and 33.2% of women in STEM occupations), it remains substantial. 

Baird, Ko, et al., (2023) also show that the fraction of STEM graduates working in STEM 

increases each year for both men and women, regardless of educational attainment, but 

the gender gap in STEM employment grows slightly each year. Figure A.1 further 

disaggregates this finding by field of study, where we see persistent gender gaps even 

within STEM field of study groups.  

Figure 1 presents an exhibit from Baird, Ko, et al., (2023) paper that is of particular 

interest to our analysis. It shows the proportion of STEM graduates and workers who are 

women both at graduation from college (year 0) and in employment for years 1 through 

5 after graduation. Although we observe a very slight decrease in women's representation 

after year 1, this decrease is relatively small compared to the substantial increase in the 

gender gap between graduation and one year after graduation. For example, for 

bachelor’s degree or higher STEM graduates, 40.3% of the graduating class in our data 

are women, while one year later only 32.4 percent of STEM workers are women. 

Thereafter the decline is shallow, ending in 31.7 percent of STEM workers five years after 

 
3 https://www.bls.gov/emp/tables/stem-employment.htm  

https://www.bls.gov/emp/tables/stem-employment.htm
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graduating a STEM degree being women. This suggests that the majority of the attrition 

resulting in under-representation of women in STEM occurs within the first year after 

graduation, which holds true for both associate degree holders and bachelor's or higher 

workers. 

 

Figure 1: Proportion of STEM that are women among STEM degree holders, by time 
since graduation 

 
Note: Repeated from Baird, Ko, et al., (2023). Each group is limited only to those with STEM 

degrees from the 2016 cohort. 

 

Additionally, Figures A.2 and A.3 in the appendix provide Sankey charts for 

employment status in each of the first five years after graduation for STEM bachelor's 

degree holders. We compare the trends for men and women for the 2016 graduating 

cohort. Three attributes stand out: first, the transitions between states are small compared 
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to the proportion of people who remain stable within their respective groups, indicating 

that most STEM workers tend to stay in STEM jobs over time after their initial placement 

one year after graduation, and the same for non-STEM workers in non-STEM. This is not 

necessarily implied from Figure 1, which could have occurred with high levels of 

turnover between STEM and non-STEM. This is not the case though, as shown, with 

workers staying within STEM or non-STEM. Secondly, the small but source of entry of 

workers into STEM after year 1 comes primarily from workers in non-STEM, as opposed 

to those not working. Third, the gender gap in STEM is reinforced and evident 

throughout as well, but the turnover rates are relatively similar between women and 

men. 

Given the substantial decrease in representation for women between graduation 

and one year later, and the greater stability in STEM employment for the following five 

years, we focus on the initial drop-off period. Specifically, we use working in STEM one 

year after graduation as the outcome variable and limit our analysis to the graduation 

cohorts of 2019, 2020, and 2021 to include key predictors that are only available for recent 

years. Table 1 provides the summary statistics for the analytical sample used in our 

regression analysis. The mean values for women and men differ significantly for all 

variables at the 1 percent level with the exception of the proportion not working one year 

after graduation (4.7 percent for both men and women). 

In our sample of recent graduates, we find that women are 14.1 percentage points 

less likely to work in STEM one year after graduation than men, and 14.6 percentage 

points more likely to work in non-STEM fields. The gender differences in other 

employment outcomes, such as being in an unknown occupation or not working, are 

small.  

We next examine the averages for several potential mechanisms and control 

variables in our regressions. We observe large gender gaps in job search behavior, with 

women viewing and applying to fewer job postings overall, and a smaller proportion of 

STEM job postings compared to men. Specifically, female STEM graduates in our sample 

have 39.2% of viewed jobs and 42.0% of job applications in STEM occupations, compared 

to 58.6% and 63.8% for men, respectively. For regression analysis, we set the fraction 
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equal to zero when they did not view or apply to any job postings. We control for total 

views and applications, which thus controls for this imputation. Additionally, setting 

equal to zero is consistent with the notion that they did not view or apply for any STEM 

job postings 

Table 1: Summary statistics from analytic sample 
 

  Women Men   
  Obs. Mean SD Obs. Mean SD Diff. 
Employment and education outcome       
STEM job 673,823 0.337 0.473 942,182 0.478 0.5 -0.141 
Non-STEM job 673,823 0.456 0.498 942,182 0.31 0.462 0.146 
Unknown occupation  673,823 0.159 0.365 942,182 0.164 0.37 -0.005 
No job 673,823 0.047 0.213 942,182 0.047 0.212 0.000 

Individual job search activity       
 

Sub-baccalaureate worker 673,823 0.034 0.182 942,182 0.061 0.238 -0.027 
IHS number of job posting 

views 
673,823 3.247 2.489 942,182 3.46 2.54 -0.213 

% job posting views that are 
STEM 

520,245 0.392 0.382 744,951 0.586 0.394 -0.194 

% job posting views that are 
STEM (zero-added) 

673,823 0.302 0.374 942,182 0.463 0.424 -0.161 

IHS number of job 
applications 

673,823 0.797 1.518 942,182 0.998 1.693 -0.201 

% job applications that are 
STEM 

198,017 0.42 0.438 323,614 0.638 0.427 -0.218 

% job applications that are 
STEM (zero-added) 

673,823 0.124 0.305 942,182 0.219 0.393 -0.095 

Local market conditions       
 

IHS number of local job posts 673,823 9.938 5.558 942,182 9.866 5.499 0.072 
% local posts that are STEM 522,149 0.262 0.075 731,945 0.259 0.075 0.003 

% local posts that are STEM 
(zero-added) 

673,823 0.203 0.128 942,182 0.202 0.127 0.001 

% local STEM seniority that 
are women 

528,321 0.33 0.029 741,655 0.327 0.03 0.003 

% local Non-STEM seniority 
that are women 

528,327 0.535 0.019 741,666 0.534 0.022 0.001 

Note: Obs.: number of observations. SD: standard deviation. Diff: difference between 
men and women mean values. The difference between men and women’s mean values is 
statistically different for each variable at p<0.01 except for “no job”.   
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When looking at local STEM conditions, men and women do not live in 

substantially different local labor markets (e.g., metropolitan areas). There is only 

approximately three-tenths of a percentage point difference in local postings that are for 

STEM positions between men and women, both at around 26.2 percent of posts. 

Additionally, both men and women live in markets where approximately 33 percent of 

workers in STEM are women, and 53% of non-STEM workers are women.  

 

3.2. Regression Analysis 

We next turn to regression analysis to understand the specific transition from STEM 

education to their employment situation a year after graduation, where we see the most 

dramatic drop-off in the representation of women in STEM as shown in Figure 1.  

 To investigate the relationship between various predictors and the likelihood of 

being employed in a STEM job one year after graduation, we estimate a series of linear 

regressions with different sets of covariates as well as an indicator for gender. Table 2 

summarizes the results of these models. Contrasting these regressions allows us to 

examine the extent to which the gender gap changes when controlling for other factors, 

as well as to investigate which factors impact STEM participation. The first column 

presents the raw difference without controlling for any covariates. In the subsequent 

columns, we add additional controls, including college major (column 2), personal 

activity and attributes (column 3), local labor conditions (column 4), and all covariates 

combined (column 5). 

First, we observe that controlling for major choice reduces the gender gap in STEM 

employment by nearly half, from 17.1 percentage points to 10.2 percentage points. This 

suggests that women tend to select STEM majors (such as psychology and majors within 

social sciences) that are less likely to lead to STEM employment compared to men, who 

are more likely to major in fields such as engineering and computer science that have 

higher transition rates into STEM jobs. Including job search covariates such as job views 

and search behavior (column 3) leads to a larger reduction in the gender gap. Although 

not causally identified, this reduction from 17.1 to 5.5 percentage points suggests that 

these individual behaviors are significant in determining STEM employment outcomes. 
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In other words, if a man and woman have similar STEM job search behavior, the 

difference in their likelihood of being employed in STEM one year after graduation is 

relatively small, although it exists. 

Table 2: Linear Regressions of STEM employment one year after graduation 

 No 
controls 

Field of 
study 

controls 
Job search Market 

covariates 
All 

covariates 

Male 0.171*** 0.102*** 0.055*** 0.088*** -0.018* 
 (0.001) (0.026) (0.001) (0.013) (0.008) 
Sub-baccalaureate   -0.098***  -0.102*** 
   (0.002)  (0.002) 
IHS number of job posting 

views 
  -0.043***  -0.037*** 
  (0.000)  (0.001) 

IHS number of job 
applications 

  0.015***  0.013*** 
  (0.000)  (0.000) 

% job posting views that 
are STEM 

  0.667***  0.600*** 
  (0.001)  (0.004) 

% job applications that are 
STEM 

  0.104***  0.090*** 
  (0.001)  (0.002) 

IHS number of local job 
posts 

   0.000 0.001 
   (0.002) (0.001) 

% local posts that are 
STEM 

   0.170** 0.111** 
   (0.054) (0.037) 

% STEM workers who are 
the same gender 

   0.211*** 0.151*** 
   (0.031) (0.021) 

% Non-STEM workers who 
are the same gender 

   -0.136* -0.071* 
   (0.054) (0.028) 

      

FE: Major  X   X 
FE: Market area    X X 
FE: Year     X 
Number of observations 1354832 1354832 1354832 1354832 1354832 
R2 adjusted 0.029 0.134 0.311 0.036 0.332 
R2 within adjusted  0.010  0.029 0.234 
AIC 1927305 1772230 1461627 1917452 1420232 

Std. Errors IID By major IID Market 
area 

Market 
area 

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. IHS: inverse hyperbolic sine. 
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When accounting for market conditions in column 4, which includes market fixed 

effects, the gender gap in STEM participation decreases from 17.1 percentage points to 

8.8 percentage points. The likelihood of working in STEM is higher when the market has 

a greater proportion of STEM-related job openings and when workers in STEM are 

predominantly of the same gender as the graduating student. Additionally, after 

controlling for all covariates in column 5, the gender gap actually reverses, and women 

are 1.8 percentage points more likely than men to work in STEM one year after 

graduation. This reversal of a gap has been observed before, as shown for example in 

Sovero et al. (2021) in Table 7, where the racial gaps in STEM graduation in college are 

eliminated and flipped when controlling for all covariates.  

Several coefficients in model 5 are of interest. Viewing more job postings overall is 

negatively related to the likelihood of ending up in STEM (while holding constant the 

number of jobs applied to), while applying for more jobs (holding constant job viewing 

behavior) is positively related to ending up in STEM. This suggests that having a high 

applications-to-views ratio is positively related to working in STEM. On average, women 

in the sample view and apply to fewer jobs than men, with a larger disparity in 

application behavior, which may contribute to the gender gap in STEM. The likelihood 

of ending up in STEM is highly related to viewing and applying to a greater proportion 

of STEM jobs, which as discussed earlier may serve as an indicator of interest in STEM 

work. As shown in Table 1, women tend to view and apply to a smaller proportion of 

STEM jobs compared to men, indicating possible gender-based differences in preferences 

and beliefs regarding barriers, access, and perceived fit into STEM jobs (Cheryan et al., 

2011; Moè et al., 2021; Rittmayer & Beier, 2008). These beliefs may include concerns about 

gender discrimination within STEM jobs and whether women feel confident in their 

ability to be considered strong candidates for these positions. 

Our analysis shows that local labor conditions have explanatory power, even after 

controlling for other factors. Specifically, we find that a ten percentage point increase in 

the proportion of job postings that are STEM-related is associated with a one percentage 

point increase in the likelihood of working in STEM, highlighting the significance of local 

demand for STEM jobs. Interestingly, this effect is of a similar magnitude as the impact 
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of increasing the proportion of job applications that are STEM-related, suggesting an 

unexpected equality in impact between these labor demand and supply effects. 

Additionally, there is evidence for homophily in the data. A ten percentage point increase 

in the share of local STEM workers who share the same gender as the graduate increases 

the likelihood of working in STEM by 1.5 percentage points. Conversely, a 10 percentage 

point increase in the share of non-STEM workers who share the same gender as the 

graduate decreases the likelihood of working in STEM by 0.7 percentage points. These 

findings suggest that market conditions, including local demand for STEM and 

homophily, play a role in shaping transition into STEM careers.  

 

Table 3: Linear Regressions of STEM employment one year after graduation, by gender 

 Men Women Difference 
Sub-baccalaureate -0.098*** -0.113*** 0.016*** 
 (0.003) (0.003) (0.004) 
IHS number of job posting 

views 
-0.041*** -0.032*** -0.009*** 
(0.001) (0.001) (0.000) 

IHS number of job applications 0.014*** 0.011*** 0.003*** 
(0.000) (0.001) (0.000) 

% job posting views that are 
STEM 

0.572*** 0.649*** -0.077*** 
(0.004) (0.004) (0.002) 

% job applications that are 
STEM 

0.089*** 0.107*** -0.018*** 
(0.002) (0.003) (0.002) 

IHS number of local job posts 0.001 0.001 0.000 
(0.001) (0.001) (0.000) 

% local posts that are STEM 0.117** 0.095** 0.022 
(0.042) (0.032) (0.018) 

% STEM workers who are the 
same gender 

0.140** 0.105** 0.035 
(0.046) (0.036) (0.074) 

% Non-STEM workers who are 
the same gender 

-0.070 0.005 -0.075 
(0.068) (0.060) (0.121) 

Fixed effects: major, market area, year 
Number of observations: 1,354,832 
R2 adjusted: 0.334, R2 within adjusted: 0.236, AIC: 1416175 
Std. errors clustering: market area 
Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. IHS: inverse hyperbolic sine. 
Regressions additionally control for gender. 
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In Table 3, we re-estimate the full model from column 5 in Table 2 but interact each 

coefficient with gender to estimate separate coefficients for men (column 1 in Table 3) and 

women (column 2). Column 3 presents the difference in coefficients. Men have large 

responsiveness to number of postings, but smaller to the types of job posts (the fraction 

that are STEM). Meanwhile, there are no significant differences in the responsiveness to 

local market conditions.  

 

3.3. Oaxaca-Blinder Decomposition 

We next take the full model presented in Table 2 column 5 and implement a Oaxaca-

Blinder decomposition (Blinder, 1973; Oaxaca, 1973) which allows us to investigate the 

extent to which gaps may be explained by differences in the variables (or, “endowments” 

as the literature calls them, resulting in the “explained” portion of the gap) compared to 

differences in the coefficients (the “unexplained” portion of the gap). There are many 

versions of the model based on whether the decomposition is a two-fold or three-fold, 

and if a two-fold, what weights are used to determine the common coefficients. Here, we 

use a two-fold model with the pooled regression weights with group indicators (Jann, 

2008). We use the “oaxaca” package in R to estimate the model (Hlavac, 2022). 

Additionally, given package and data limitations, for this analysis we dropped markets 

which had 100 or fewer observations across the three years, which accounted for around 

one half of one percent of the sample. Table A.1 in the appendix contrasts the regression 

coefficients for the full sample and this 99.5% subsample. The results are relatively similar 

here.   

Table 4 presents the break-down of the explained versus unexplained portions if 

just the college major, the job search covariates, or the local market conditions are 

included, as well as if all are included. These results align with the findings from Table 2. 

When college major fixed effects are used, approximately 41% (0.0696/(0.0696+0.1022)) 

is explained by differences in the endowments (differences in which majors they are 

graduating from), whereas just over half remain unexplained and is unexplained. When 

just the job search measures are included, 68% of the difference is explained by 
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differences in the endowments, and market conditions explain 45%. When all covariates 

are included, all of the gap is explained and more, given the earlier-reported finding 

where all covariates flip the sign of the gap, giving women a slight edge.   

 

Table 4: Blinder-Oaxaca Decomposition Results 

 Covariates included 

 
College 
major Job search Market All 

Explained portion 0.0696 0.1165 0.0770 0.1875 
 (0.0004) (0.0005) (0.0073) (0.0064) 
Unexplained portion (using 

men as reference group) 
0.1022 0.0553 0.0948 -0.0156 

(0.0009) (0.0007) (0.0072) (0.0063) 
Note: Standard errors in parentheses 

 Figure 2 presents a graphical representation of the Oaxaca-Blinder decomposition 

of the gap by endowment and unexplained portions by covariates. The explained portion 

of the gap driven by differences in the covariates are driven by two primary factors: the 

proportion of job views that are STEM positions, and the proportion of the local STEM 

workforce who are the same gender. The remaining covariates are substantially smaller 

in their explained impact on the gap. As for the unexplained portion, the overall impact 

of differences in coefficients is small in explaining the gap (see Table 4), and is driven 

primarily by differences in the impact of job views—both total count and fraction 

STEM—on STEM employment. And in fact, the differences in the coefficients help 

narrow the gap—that is, the gender gap in STEM would be even wider if men and women 

shared similar coefficients. 

Take for example the proportion of job posting views that are STEM. From Table 

3, we can see that for a ten percentage point increase in the share of job posting views that 

are STEM for women (say, from viewing 40% STEM postings to 50%), the likelihood of 

ending up in a STEM position is predicted to increase by 6.49 percentage points. For the 

same ten percentage point increase in the share of job posting views that are STEM for 

men, we predict an increase in the likelihood of working in STEM of only 5.72 percentage 

points, slightly lower. Thus, the higher responsiveness of women than men to these 

factors actually keep the gender gap narrower than it would be otherwise. Nevertheless, 
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this advantage is not large enough to compensate for how different the endowments are. 

Taking this example again, while women may be more responsive in the data to viewing 

STEM job postings and the translation into working in a STEM job, they are much less 

likely to view STEM job postings than men (39.2 versus 58.6), overshadowing any 

advantages they would have had from that stronger relationship between the two.  

 

Figure 2: Oaxaca-Blinder decomposition by covariate 
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4. Discussion 

Increasing gender representation in STEM employment may have several important 

benefits, both for productivity and scientific advancement as well as equity and 

narrowing of income gaps between men and women. Most research in the past has been 

focused on documenting and exploring gender STEM gaps in education, especially in 

post-secondary education when individuals most concretely commit to a career path. 

This paper contributes to the literature by focusing on what happens after graduation 

from college with a STEM degree, and an exploration into potential reasons for the gap. 

In some ways, separation from STEM at this point in the pipeline is the most costly, as it 

may involve skills and proficiencies that took years to develop that the worker does not 

put into use in their employment at all. Insofar as structural barriers reinforce gender 

gaps, this would lead to widened inequities. 

 We find that the most important point of gap-widening is within the first year after 

graduation from STEM. Thereafter, while there is still an increase in the share of STEM 

graduates working in STEM over time for both men and women, the gap between them 

stays relatively stable after the first year of employment. For example, while women 

representation in STEM majors for bachelor’s degree holders is 40.3 percent, one year 

later in the labor market it drops to 32.4 percent. Thereafter, there is a shallow continual 

decrease in female representation over the next few years, to 31.7 percent five years after 

graduation. 

 In exploring that first-year outcome, we find that may factors are important 

predictors of the gap—from college major, to job search behavior, to local STEM market 

conditions. Of that observable gap, the largest difference driving the observed gap in 

outcomes is due to differences in the fraction of job postings that they view that are STEM, 

with women coming from STEM degrees having around 39.2% of all job postings they 

view being for STEM positions, while men view around 58.6%. This difference is 

suggestive of differences in preferences and beliefs about potential success in the STEM 

labor market. Reinforcing this, the second most impactful difference between men and 

women in explaining the STEM gender gap is the proportion of the local STEM workforce 

that are the same gender as the graduate—which is approximately 1/3rd of the workforce 
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for women, and 2/3rds for men. This may help explain why women are less likely to 

view and subsequently apply for STEM positions. In addition, college major (among the 

STEM majors) is a large predictor of whether the graduate ends up in a STEM job or not, 

explaining along 41% of the overall gap. Some STEM majors have strong pipelines into 

STEM occupations, such as engineering, while other majors have weaker pipelines to 

STEM occupations, such as some within social science.  

While most of the gap is explained by difference in endowments, such as those 

explained in the prior paragraph, differences in how men and women respond also 

contribute to the gap. However, most of these actually help narrow the gap. That is, the 

gap would be even wider if men and women had the same relationships between the 

predictors and working in STEM. For example, for women, each increase in the 

proportion of job posting views that are STEM leads to a bigger increase in the probability 

of ending up in STEM than the same increase for men. However, these stronger 

relationships are not enough to offset the larger differences in the predictors 

themselves—while women may be more responsive to an increase in the proportion of 

job views that are STEM compared to men, they have a much smaller level currently. 

Women views contain a smaller fraction of STEM postings than men. 

These findings suggest that the key to decreasing gender gaps in STEM lies both 

earlier in the educational pipeline (to increase representation of women in strong STEM 

feeder majors, such as engineering), as well as to find ways to encourage new women 

graduates to consider—and apply for—STEM jobs. This could mean more outreach from 

companies towards women just graduating, as well as communication from educators 

about women having a place in STEM. There also may be a role for platforms such as 

LinkedIn to provide insights encouraging women into STEM and to highlight specific 

STEM jobs that a graduate would be a good fit for. This would then serve a reinforcing 

mechanism, as the local market would contain more gender representation which in turn 

would increase the retention of women in STEM as well. 

There are many paths for future research. We hope to investigate discouragement 

more concretely after applying for STEM positions, and the extent to which nudges 

towards STEM jobs can lead to higher view and application rates. We further plan to 
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investigate international trends to compare to the United States. This will also help in 

contrasting majors and industries with higher or lower fractions of women to separate 

out preferences for other industry characteristics that may be correlated with STEM 

representation of women.  We will also use their peer network to understand the impact 

of changes into and out of STEM for peers on their own decisions, recruiter outreach 

differences, and the role of the rise of remote work, to understand if this leads to an 

increase in women representation in STEM and what the long term implications are, 

especially if career advancement differs depending on remote work status.
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APPENDIX 

Defining STEM skills 

Our first step is to define STEM skills. Here, by STEM skills we mean skills that are 

specific to STEM, and not universal skills that would be part of any proficiency or 

competency, such as dependability and basic literacy and numeracy. To create this list, 

we calculated the probability that a STEM graduate had added each given skill and 

contrasted it to the probability that a non-STEM graduate had added the skill. We took 

the ratio of the two probabilities and classified a skill as STEM if this odds ratio exceeded 

5. See Baird, Gahlawat, et al., (2023) for details into this distribution and the methodology. 

 

Defining STEM occupations 

We define STEM occupations using the list of STEM skills. To do so, we merged STEM 

skills onto the list of skills unique to different occupations using LinkedIn’s Skills 

Genome.10 Prior work at LinkedIn created a list of skills related with each occupation 

using the skills genome. This list is ranked by TF-IDF scores within each occupation. For 

each occupation, we retained the top ten skills for each occupation. We merged this onto 

the list of STEM skills developed above and classified the occupation as STEM if at least 

one skill was in the top ten for that occupation is a STEM skill.  

  

 

  

 
10 h#ps://engineering.linkedin.com/blog/2019/how-we-mapped-the-skills-genome-of-emerging-jobs 
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Supplementary Figures and Tables 

 

Table A.1: Comparison of main results under sample restriction dropping markets with 

100 or fewer observations 

 
  Full Subsample 
Male -0.018* -0.016+ 
 (0.008) (0.009) 
Sub-baccalaureate -0.102*** -0.102*** 
 (0.002) (0.002) 
IHS number of job posting views -0.037*** -0.037*** 
 (0.001) (0.001) 
IHS number of job applications 0.013*** 0.013*** 
 (0.000) (0.000) 
% job posting views that are STEM 0.600*** 0.600*** 
 (0.004) (0.004) 
% job applications that are STEM 0.090*** 0.090*** 
 (0.002) (0.002) 
IHS number of local job posts 0.001 0.001 
 (0.001) (0.001) 
% local posts that are STEM 0.111** 0.111** 
 (0.037) (0.039) 
% STEM workers who are the same gender 0.151*** 0.145*** 
 (0.021) (0.022) 
% Non-STEM workers who are the same gender -0.071* -0.067* 
 (0.028) (0.030) 
Number of observations 1,354,832 1,347,369 
R2 Adj. 0.332 0.333 
R2 Within Adj. 0.234 0.234 
AIC 1420232 1411380 
FE: Market X X 
FE: Major X X 
FE: Year X X 

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the 
market level in parentheses 
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Figure A.1: Retention in STEM one year after graduation by field of study and gender 
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Figure A.2: Sankey flow diagram for women with STEM bachelor’s degrees, transitions between stages in first five years 
after graduation from STEM degree 
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Figure A.3: Sankey flow diagram for men with STEM bachelor’s degrees, transitions between stages in first five years after 
graduation from STEM degree 

 
 


